login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A166914
a(n) = 20*a(n-1) - 64*a(n-2) for n > 1; a(0) = 21, a(1) = 340.
9
21, 340, 5456, 87360, 1398016, 22369280, 357912576, 5726617600, 91625947136, 1466015416320, 23456247709696, 375299967549440, 6004799497568256, 96076792028200960, 1537228672719650816, 24595658764588154880
OFFSET
0,1
COMMENTS
Related to Reverse and Add trajectory of 318 in base 4: A075153(6*n+2) = 240*a(n).
FORMULA
a(n) = (64*16^n - 4^n)/3.
G.f.: (21 - 80*x)/((1-4*x)*(1-16*x)).
Limit_{n -> infinity} a(n)/a(n-1) = 16.
From G. C. Greubel, May 28 2016: (Start)
a(n) = 20*a(n-1) - 64*a(n-2).
E.g.f.: (1/3)*(-exp(4*x) + 64*exp(16*x)). (End)
MATHEMATICA
CoefficientList[Series[(21-80x)/((1-4x)(1-16x)), {x, 0, 20}], x] (* or *) LinearRecurrence[{20, -64}, {21, 340}, 20] (* Harvey P. Dale, Feb 23 2011 & Mar 30 2012 *)
PROG
(PARI) {m=15; v=concat([21, 340], vector(m-2)); for(n=3, m, v[n]=20*v[n-1]-64*v[n-2]); v}
(Magma)
[Binomial(4^(n+3), 2)/96: n in [0..30]]; // G. C. Greubel, Oct 02 2024
(SageMath)
A166914=BinaryRecurrenceSequence(20, -64, 21, 340)
[A166914(n) for n in range(31)] # G. C. Greubel, Oct 02 2024
KEYWORD
nonn
AUTHOR
Klaus Brockhaus, Oct 27 2009
STATUS
approved