The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A166984 a(n) = 20*a(n-1) - 64*a(n-2) for n > 1; a(0) = 1, a(1) = 20. 6
 1, 20, 336, 5440, 87296, 1397760, 22368256, 357908480, 5726601216, 91625881600, 1466015154176, 23456246661120, 375299963355136, 6004799480791040, 96076791961092096, 1537228672451215360, 24595658763514413056 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Partial sums of A166965. lim_{n -> infinity} a(n)/a(n-1) = 16. a(n) = A115490(n+1)/3. First differences of A006105. - Klaus Purath, Oct 15 2020 LINKS Seiichi Manyama, Table of n, a(n) for n = 0..830 (terms 0..200 from Vincenzo Librandi) E. Saltürk and I. Siap, Generalized Gaussian Numbers Related to Linear Codes over Galois Rings, European Journal of Pure and Applied Mathematics, Vol. 5, No. 2, 2012, 250-259; ISSN 1307-5543. - From N. J. A. Sloane, Oct 23 2012 Index entries for linear recurrences with constant coefficients, signature (20,-64). FORMULA a(n) = (4*16^n - 4^n)/3. G.f.: 1/((1-4*x)*(1-16*x)). From Robert A. Russell, Apr 03 2013: (Start) E.g.f.: sinh(x)^4/4!. a(n) = Sum{n>=0, a(n) x^(2n+4)/(2n+4)!}. (End) From Klaus Purath, Oct 15 2020: (Start) a(n) = A002450(n+1)*(A002450(n+2) - A002450(n))/5. a(n) = (A083584(n+1)^2 - A083584(n)^2)/80. (End) MATHEMATICA LinearRecurrence[{20, -64}, {1, 20}, 30] (* Harvey P. Dale, Jul 04 2012 *) PROG (MAGMA) [ n le 2 select 19*n-18 else 20*Self(n-1)-64*Self(n-2): n in [1..17] ]; CROSSREFS Cf. A006105, A166965, A115490, A166914, A166917, A166927, A002452, A002453, A307695. Sequence in context: A187512 A144507 A084032 * A167031 A268787 A272183 Adjacent sequences:  A166981 A166982 A166983 * A166985 A166986 A166987 KEYWORD nonn AUTHOR Klaus Brockhaus, Oct 26 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 30 11:07 EST 2021. Contains 349419 sequences. (Running on oeis4.)