OFFSET
0,7
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..400
FORMULA
a(n) = (1/4!)*Sum_{k=0..n-5} (n+k-1)!/((n-k-5)!*k!*2^k).
a(n) = A001516(n-3)/6 for n > 2. [Corrected by Georg Fischer, Jan 25 2020]
a(n) = ( (2*n-7)*(n^2 -7*n +14)*a(n-1) + (n-2)*(n-3)*a(n-2) )/((n-4)*(n-5)), with a(0)=a(1)=a(2)=a(3)=a(4)=0, and a(5)=1. - G. C. Greubel, Oct 10 2023
MAPLE
f4:=proc(n) local k; add((n+k-1)!/(4!*(n-k-5)!*k!*2^k), k=0..n-5); end;
[seq(f4(n), n=0..60)];
MATHEMATICA
Table[Sum[1/6 (n+k+2)!/(2^(k+2) (n-k-2)! k!), {k, 0, n-2}], {n, -3, 20}] (* Vincenzo Librandi, Jan 27 2020 *)
PROG
(Magma) I:=[0, 0, 0, 0, 0, 1]; [n le 6 select I[n] else ((2*n-9)*(n^2-9*n+22)*Self(n-1) + (n-3)*(n-4)*Self(n-2))/((n-5)*(n-6)): n in [1..32]]; // G. C. Greubel, Oct 10 2023
(SageMath)
@CachedFunction
def A144507(n): return sum(binomial(n-5, j)*rising_factorial(n-4, j+4)/(24*2^j) for j in range(n-4))
[A144507(n) for n in range(31)] # G. C. Greubel, Oct 10 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 14 2008
STATUS
approved