login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A144505 Triangle read by rows: coefficients of polynomials arising from the recurrence A[n](x) = A[n-1]'(x)/(1-x) with A[0] = exp(x). 8
1, 1, -1, 2, 1, -5, 7, -1, 9, -30, 37, 1, -14, 81, -229, 266, -1, 20, -175, 835, -2165, 2431, 1, -27, 330, -2330, 9990, -24576, 27007, -1, 35, -567, 5495, -34300, 137466, -326515, 353522, 1, -44, 910, -11522, 97405, -561386, 2148139, -4976315, 5329837 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

LINKS

Seiichi Manyama, Rows n = 0..140, flattened

N. J. A. Sloane, Rows 0 through 25 of the triangle, together with the corresponding polynomials P[n](x).

FORMULA

Let A[0](x) = exp(x), A[n](x) = A[n-1]'(x)/(1-x) for n>0 and let P[n](x) = A[n](x)*(1-x)^(2n-1)/exp(x). Row n of triangle gives coefficients of P[n](x) with exponents of x in decreasing order.

P[n] = Sum((n+k)!/(n-k)!/k!/2^k*(1-x)^(n-k),k=0..n). E.g.f.: exp((1-x)*(1-sqrt(1-2*y)))/sqrt(1-2*y). [Vladeta Jovovic, Dec 15 2008]

EXAMPLE

The first few polynomials P[n] (n >= 0) are:

1

1

-x+2

x^2-5*x+7

-x^3+9*x^2-30*x+37

x^4-14*x^3+81*x^2-229*x+266

-x^5+20*x^4-175*x^3+835*x^2-2165*x+2431

x^6-27*x^5+330*x^4-2330*x^3+9990*x^2-24576*x+27007

-x^7+35*x^6-567*x^5+5495*x^4-34300*x^3+137466*x^2-326515*x+353522

x^8-44*x^7+910*x^6-11522*x^5+97405*x^4-561386*x^3+2148139*x^2-4976315*x+5329837

...

Triangle of coefficients begins:

1;

1;

-1, 2;

1, -5, 7;

-1, 9, -30, 37;

1, -14, 81, -229, 266;

-1, 20, -175, 835, -2165, 2431;

1, -27, 330, -2330, 9990, -24576, 27007;

-1, 35, -567, 5495, -34300, 137466, -326515, 353522;

1, -44, 910, -11522, 97405, -561386, 2148139, -4976315, 5329837;

...

MAPLE

A[0]:=exp(x);

P[0]:=1;

for n from 1 to 12 do

A[n]:=sort(simplify( diff(A[n-1], x)/(1-x)));

P[n]:=sort(simplify(A[n]*(1-x)^(2*n-1)/exp(x)));

t1:=simplify(x^(degree(P[n], x))*subs(x=1/x, P[n]));

t2:=series(t1, x, 2*n+3);

lprint(P[n]);

lprint(seriestolist(t2));

od:

CROSSREFS

Columns give A001515 (really A144301), A144498, A001514, A144506, A144507. Row sums give A001147. Alternating row sums give A043301.

Sequence in context: A129321 A064642 A193630 * A059039 A332022 A109261

Adjacent sequences: A144502 A144503 A144504 * A144506 A144507 A144508

KEYWORD

sign,tabf

AUTHOR

N. J. A. Sloane, Dec 14 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 23 09:28 EDT 2023. Contains 361443 sequences. (Running on oeis4.)