login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A144505
Triangle read by rows: coefficients of polynomials arising from the recurrence A[n](x) = A[n-1]'(x)/(1-x) with A[0] = exp(x).
8
1, 1, -1, 2, 1, -5, 7, -1, 9, -30, 37, 1, -14, 81, -229, 266, -1, 20, -175, 835, -2165, 2431, 1, -27, 330, -2330, 9990, -24576, 27007, -1, 35, -567, 5495, -34300, 137466, -326515, 353522, 1, -44, 910, -11522, 97405, -561386, 2148139, -4976315, 5329837
OFFSET
0,4
LINKS
Ling Gao, Graph assembly for spider and tadpole graphs, Master's Thesis, Cal. State Poly. Univ. (2023). See pp. 42, 63.
FORMULA
Let A[0](x) = exp(x), A[n](x) = A[n-1]'(x)/(1-x) for n>0 and let P[n](x) = A[n](x)*(1-x)^(2n-1)/exp(x). Row n of triangle gives coefficients of P[n](x) with exponents of x in decreasing order.
From Vladeta Jovovic, Dec 15 2008: (Start)
P[n] = Sum_{k=0..n} ((n+k)!/((n-k)!*k!*2^k)) * (1-x)^(n-k).
E.g.f.: exp((1-x)*(1-sqrt(1-2*y)))/sqrt(1-2*y). (End)
EXAMPLE
The first few polynomials P[n] (n >= 0) are:
P[0] = 1;
P[1] = 1;
P[2] = -x +2;
P[3] = x^2 -5*x +7;
P[4] = -x^3 + 9*x^2 - 30*x +37;
P[5] = x^4 -14*x^3 + 81*x^2 - 229*x +266;
P[6] = -x^5 +20*x^4 -175*x^3 + 835*x^2 -2165*x +2431;
P[7] = x^6 -27*x^5 +330*x^4 -2330*x^3 +9990*x^2 -24576*x +27007;
...
Triangle of coefficients begins:
1;
1;
-1, 2;
1, -5, 7;
-1, 9, -30, 37;
1, -14, 81, -229, 266;
-1, 20, -175, 835, -2165, 2431;
1, -27, 330, -2330, 9990, -24576, 27007;
-1, 35, -567, 5495, -34300, 137466, -326515, 353522;
1, -44, 910, -11522, 97405, -561386, 2148139, -4976315, 5329837;
...
MAPLE
A[0]:=exp(x);
P[0]:=1;
for n from 1 to 12 do
A[n]:=sort(simplify( diff(A[n-1], x)/(1-x)));
P[n]:=sort(simplify(A[n]*(1-x)^(2*n-1)/exp(x)));
t1:=simplify(x^(degree(P[n], x))*subs(x=1/x, P[n]));
t2:=series(t1, x, 2*n+3);
lprint(P[n]);
lprint(seriestolist(t2));
od:
MATHEMATICA
f[n_, x_]:= x^n*Sum[((n+j)!/((n-j)!*j!*2^j))*(1-1/x)^(n-j), {j, 0, n}];
t[n_, k_]:= Coefficient[Series[f[n, x], {x, 0, 30}], x, k];
Join[{1}, Table[t[n, k], {n, 0, 12}, {k, 0, n}]//Flatten] (* G. C. Greubel, Oct 02 2023 *)
PROG
(Magma)
R<x>:=PowerSeriesRing(Integers(), 50);
f:= func< n, x | x^n*(&+[Binomial(n, j)*Factorial(n+j)*(1-1/x)^(n-j)/(2^j*Factorial(n)) : j in [0..n]]) >;
T:= func< n, k | Coefficient(R!( f(n, x) ), k) >;
[1] cat [T(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 02 2023
(SageMath)
P.<x> = PowerSeriesRing(QQ, 50)
def f(n, x): return x^n*sum(binomial(n, j)*rising_factorial(n+1, j)*(1-1/x)^(n-j)/2^j for j in range(n+1))
def T(n, k): return P( f(n, x) ).list()[k]
[1] + flatten([[T(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Oct 02 2023
CROSSREFS
Columns give A001515 (really A144301), A144498, A001514, A144506, A144507.
Row sums give A001147.
Alternating row sums give A043301.
Sequence in context: A129321 A064642 A193630 * A369527 A370382 A059039
KEYWORD
sign,tabf
AUTHOR
N. J. A. Sloane, Dec 14 2008
STATUS
approved