login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A369527
Array read by downward antidiagonals: A(n,k) = (k+1)^2*A(n-1,k) + A(n-1,k+1) with A(0,k) = 1, n >= 0, k >= 0.
1
1, 1, 2, 1, 5, 7, 1, 10, 30, 37, 1, 17, 107, 227, 264, 1, 26, 298, 1261, 2169, 2433, 1, 37, 687, 5455, 16804, 25480, 27913, 1, 50, 1382, 18557, 105837, 257073, 358993, 386906, 1, 65, 2515, 52267, 516192, 2209584, 4523241, 5959213, 6346119, 1, 82, 4242, 127477, 2009089, 14913889, 50267233, 90976402, 114813254, 121159373
OFFSET
0,3
LINKS
Ira M. Gessel, General case of the some R-recursions, answer to question on MathOverflow (2024).
EXAMPLE
Array begins:
====================================================
n\k| 0 1 2 3 4 5 ...
---+------------------------------------------------
0 | 1 1 1 1 1 1 ...
1 | 2 5 10 17 26 37 ...
2 | 7 30 107 298 687 1382 ...
3 | 37 227 1261 5455 18557 52267 ...
4 | 264 2169 16804 105837 516192 2009089 ...
5 | 2433 25480 257073 2209584 14913889 78851808 ...
...
PROG
(PARI)
A(m, n=m)={my(r=vectorv(m+1), v=vector(n+m+1, k, 1)); r[1] = v[1..n+1];
for(i=1, m, v=vector(#v-1, k, k^2*v[k] + v[k+1]); r[1+i] = v[1..n+1]); Mat(r)}
{ A(5) }
CROSSREFS
Column k=0 is A135920 (without initial term and with different offset).
Sequence in context: A064642 A193630 A144505 * A370382 A059039 A332022
KEYWORD
nonn,tabl
AUTHOR
Mikhail Kurkov, Jan 25 2024
STATUS
approved