login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A369528
Expansion of g.f. (1 - sqrt(1 - 2*x + 2*x*sqrt(1 - 4*x)))/(2*x).
0
0, 1, 1, 3, 7, 21, 62, 197, 637, 2123, 7196, 24807, 86608, 305792, 1089810, 3915789, 14169457, 51592561, 188888760, 694946257, 2568035734, 9527251374, 35472258506, 132502639491, 496423643176, 1864942753690, 7023753418030, 26514295486956, 100305236628550, 380218561128958
OFFSET
0,4
LINKS
Carles Cardó, Growth and density in free magmas, arXiv:2401.07827 [math.CO], 2024. See p. 16.
FORMULA
G.f.: (1 - sqrt(1 - 2*x + 2*x*sqrt(1 - 4*x)))/(2*x).
a(n) ~ 2^(2*n - 3/2) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Jan 28 2024
D-finite with recurrence n*(n+1)*a(n) -2*n*(7*n-8)*a(n-1) +4*(17*n^2-55*n+39)*a(n-2) +4*(-28*n^2+158*n-213)*a(n-3) +12*(-8*n^2+36*n-25)*a(n-4) +8*(56*n^2-460*n+921)*a(n-5) -16*(4*n-21)*(4*n-23)*a(n-6)=0. - R. J. Mathar, Mar 25 2024
MATHEMATICA
CoefficientList[Series[(1 - Sqrt[1 - 2*x + 2*x*Sqrt[1 - 4*x]])/(2*x), {x, 0, 12}], x]
CROSSREFS
Cf. A000108.
Sequence in context: A129366 A270049 A166358 * A148670 A148671 A148672
KEYWORD
nonn
AUTHOR
Michael De Vlieger, Jan 25 2024
STATUS
approved