login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A129366
a(n) = Sum_{k=0..floor(n/2)} A000108(n-k).
2
1, 1, 3, 7, 21, 61, 193, 617, 2047, 6895, 23691, 82435, 290447, 1033215, 3707655, 13402071, 48759741, 178403101, 656041801, 2423300129, 8987420549, 33453670773, 124936234413, 467995789277, 1757899936601
OFFSET
0,3
COMMENTS
Partial sums of A129367 (prefixed by an initial 1).
LINKS
FORMULA
G.f.: (1/(1-x))*(c(x) - x*c(x^2)), where c(x) is the g.f. of A000108(n).
G.f.: (sqrt(1-4*x^2) - sqrt(1-4*x))/(2*x*(1-x)).
a(n) = Sum_{k=floor((n+1)/2)..n} C(k), where C(n) = A000108(n).
Conjecture: n*(12*n+35)*(n-1)*a(n) + (n-1)*(12*n^2-701*n+1236)*a(n-1) + 2*(6*n^3-385*n^2+2285*n-3432)*a(n-2) + 4*(-405*n^3+5313*n^2-19970*n +23175)*a(n-3) + 8*(156*n^3-1724*n^2+5498*n-5175)*a(n-4) + 16*(393*n^3-4981*n^2+20393*n-26820)*a(n-5) - 32*(n-5)*(93*n-268)*(2*n-9)*a(n-6) = 0. - R. J. Mathar, Feb 05 2015
MATHEMATICA
Table[Sum[CatalanNumber[k], {k, Floor[(n + 1)/2], n}], {n, 0, 30}] (* Wesley Ivan Hurt, Jun 18 2022 *)
PROG
(Magma) [(&+[Catalan(n-j): j in [0..Floor(n/2)]]): n in [0..30]]; // G. C. Greubel, Jan 31 2024
(SageMath) [sum(catalan_number(n-j) for j in range(1+int(n//2))) for n in range(31)] # G. C. Greubel, Jan 31 2024
CROSSREFS
Sequence in context: A005355 A182399 A025235 * A270049 A166358 A369528
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Apr 11 2007
STATUS
approved