|
|
A129367
|
|
A symmetrical triangle of coefficient weights: A002415 :f(n)=n^2*(n^2 - 1)/12; t(n,m)=f(n - m + 1)*f(m + 1).
|
|
1
|
|
|
36, 120, 120, 300, 400, 300, 630, 1000, 1000, 630, 1176, 2100, 2500, 2100, 1176, 2016, 3920, 5250, 5250, 3920, 2016, 3240, 6720, 9800, 11025, 9800, 6720, 3240, 4950, 10800, 16800, 20580, 20580, 16800, 10800, 4950, 7260, 16500, 27000, 35280, 38416
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Row sums with zeros:
{0, 0, 36, 240, 1000, 3260, 9052, 22372, 50545}.
|
|
REFERENCES
|
Steven Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity, John Wiley and Sons, Inc., New York, 1972, page145: Number of components from curvature R(i,j,k,l) :A002415.
|
|
LINKS
|
|
|
FORMULA
|
f(n)=n^2*(n^2 - 1)/12; t(n,m)=f(n - m + 1)*f(m + 1).
|
|
EXAMPLE
|
Initial Zeros removed:
{36},
{120, 120},
{300, 400, 300},
{630, 1000, 1000, 630},
{1176, 2100, 2500, 2100, 1176},
{2016, 3920, 5250, 5250, 3920, 2016},
{3240, 6720, 9800, 11025, 9800, 6720, 3240},
{4950, 10800, 16800, 20580, 20580, 16800, 10800, 4950},
{7260, 16500, 27000, 35280, 38416, 35280, 27000, 16500, 7260}
|
|
MATHEMATICA
|
f[n_] = n*(n - 1)*(n - 2)*(n + 3)/12; t[n_, m_] = f[n - m + 1]*f[m + 1]; Table[Table[t[n, m], {m, 2, n - 2}], {n, 2, 12}]; Flatten[%]
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|