login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A129367
Triangle T(n, k) = A002415(n-k+3)*A002415(k+3), read by rows.
2
36, 120, 120, 300, 400, 300, 630, 1000, 1000, 630, 1176, 2100, 2500, 2100, 1176, 2016, 3920, 5250, 5250, 3920, 2016, 3240, 6720, 9800, 11025, 9800, 6720, 3240, 4950, 10800, 16800, 20580, 20580, 16800, 10800, 4950, 7260, 16500, 27000, 35280, 38416, 35280, 27000, 16500, 7260
OFFSET
0,1
FORMULA
T(n,k) = A002415(n-k+3)*A002415(k+3), where A002415(n) = n^2*(n^2-1)/12.
T(n, n-k) = T(n, k).
EXAMPLE
Triangle begins as:
36;
120, 120;
300, 400, 300;
630, 1000, 1000, 630;
1176, 2100, 2500, 2100, 1176;
2016, 3920, 5250, 5250, 3920, 2016;
3240, 6720, 9800, 11025, 9800, 6720, 3240;
4950, 10800, 16800, 20580, 20580, 16800, 10800, 4950;
7260, 16500, 27000, 35280, 38416, 35280, 27000, 16500, 7260;
MATHEMATICA
A129367[n_, k_]:= Binomial[(n-k+3)^2, 2]*Binomial[(k+3)^2, 2]/36;
Table[A129367[n, k], {n, 0, 12}, {k, 0, n}]//Flatten
PROG
(Magma) [Binomial((n-k+3)^2, 2)*Binomial((k+3)^2, 2)/36: k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 31 2024
(SageMath)
def A129367(n, k): return binomial((n-k+3)^2, 2)*binomial((k+3)^2, 2)/36
flatten([[A129367(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jan 31 2024
CROSSREFS
Sequence in context: A033575 A044287 A044668 * A350500 A287861 A242356
KEYWORD
nonn,tabl,easy,less
AUTHOR
EXTENSIONS
Edited by G. C. Greubel, Jan 31 2024
STATUS
approved