login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A144509
a(n) = total number of partitions of [1, 2, ..., k] into exactly n blocks, each of size 1, 2, ..., 5, for 0 <= k <= 5n.
13
1, 5, 456, 405408, 1495388159, 15467641899285, 361207016885536095, 16557834064546698285496, 1350410785161120363519024709, 182141025850694258874753732988078, 38395944834298393218465758049745918098, 12093097322244029427838390643054170162054258, 5485321312184901565806045962453632525844948020084
OFFSET
0,2
COMMENTS
Also, number of scenarios in the Gift Exchange Game when a gift can be stolen at most 4 times. - N. J. A. Sloane, Jan 25 2017
LINKS
Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, Analysis of the Gift Exchange Problem, arXiv:1701.08394 [math.CO], 2017.
Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, On-Line Appendix I to "Analysis of the gift exchange problem", giving Type D recurrences for G_1(n) through G_15(n) (see A001515, A144416, A144508, A144509, A149187, A281358-A281361)
Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, On-Line Appendix II to "Analysis of the gift exchange problem", giving Type C recurrences for G_1(n) through G_15(n) (see A001515, A144416, A144508, A144509, A149187, A281358-A281361)
David Applegate and N. J. A. Sloane, The Gift Exchange Problem, arXiv:0907.0513 [math.CO], 2009.
MATHEMATICA
t[n_, n_] = 1; t[n_ /; n >= 0, k_] /; 0 <= k <= 5*n := t[n, k] = Sum[(1/j!)*Product[k - m, {m, 1, j}]*t[n - 1, k - j - 1], {j, 0, 4}]; t[_, _] = 0; a[n_] := Sum[t[n, k], {k, 0, 5*n}]; Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Feb 18 2017 *)
PROG
(PARI) {a(n) = sum(i=n, 5*n, i!*polcoef(sum(j=1, 5, x^j/j!)^n, i))/n!} \\ Seiichi Manyama, May 22 2019
CROSSREFS
The gift scenarios sequences when a gift can be stolen at most s times, for s = 1..9, are A001515, A144416, A144508, A144509, A149187, A281358, A281359, A281360, A281361.
Sequence in context: A300928 A221626 A332145 * A375262 A240700 A060855
KEYWORD
nonn
AUTHOR
STATUS
approved