OFFSET
0,2
COMMENTS
Also, number of scenarios in the Gift Exchange Game when a gift can be stolen at most 4 times. - N. J. A. Sloane, Jan 25 2017
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..100
Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, Analysis of the Gift Exchange Problem, arXiv:1701.08394 [math.CO], 2017.
Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, On-Line Appendix I to "Analysis of the gift exchange problem", giving Type D recurrences for G_1(n) through G_15(n) (see A001515, A144416, A144508, A144509, A149187, A281358-A281361)
Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, On-Line Appendix II to "Analysis of the gift exchange problem", giving Type C recurrences for G_1(n) through G_15(n) (see A001515, A144416, A144508, A144509, A149187, A281358-A281361)
David Applegate and N. J. A. Sloane, The Gift Exchange Problem, arXiv:0907.0513 [math.CO], 2009.
MATHEMATICA
t[n_, n_] = 1; t[n_ /; n >= 0, k_] /; 0 <= k <= 5*n := t[n, k] = Sum[(1/j!)*Product[k - m, {m, 1, j}]*t[n - 1, k - j - 1], {j, 0, 4}]; t[_, _] = 0; a[n_] := Sum[t[n, k], {k, 0, 5*n}]; Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Feb 18 2017 *)
PROG
(PARI) {a(n) = sum(i=n, 5*n, i!*polcoef(sum(j=1, 5, x^j/j!)^n, i))/n!} \\ Seiichi Manyama, May 22 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
David Applegate and N. J. A. Sloane, Dec 15 2008
STATUS
approved