login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A281361
Number of scenarios in the Gift Exchange Game when a gift can be stolen at most 9 times.
10
1, 10, 352705, 3047235458767, 609542744597785306189, 1214103036523322674154687139158, 14963835327495031822418126706099787884130, 836883118002221273912672040462907783367741190535388, 170589804359366329173961838612841486616626580885839826818966688, 107640669875812795238625627484701500354901860426640161278022882392148747562, 185260259482556646382994900799988470488841686941141661692183483756531004879305895810561
OFFSET
0,2
COMMENTS
More than the usual number of terms are shown in the DATA field because there are the initial values needed for one of the recurrences.
LINKS
Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, Analysis of the Gift Exchange Problem, arXiv:1701.08394 [math.CO], 2017.
Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, On-Line Appendix I to "Analysis of the gift exchange problem", giving Type D recurrences for G_1(n) through G_15(n) (see A001515, A144416, A144508, A144509, A149187, A281358-A281361)
Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, On-Line Appendix II to "Analysis of the gift exchange problem", giving Type C recurrences for G_1(n) through G_15(n) (see A001515, A144416, A144508, A144509, A149187, A281358-A281361)
David Applegate and N. J. A. Sloane, The Gift Exchange Problem, arXiv:0907.0513 [math.CO], 2009.
MAPLE
with(combinat):
b:= proc(n, i, t) option remember; `if`(t*i<n, 0,
`if`(n=0, `if`(t=0, 1, 0), add(b(n-i*j, i-1, t-j)*
multinomial(n, n-i*j, i$j)/j!, j=0..min(t, n/i))))
end:
a:= n-> add(b(k, 10, n), k=0..10*n):
seq(a(n), n=0..12); # Alois P. Heinz, Feb 01 2017
MATHEMATICA
t[n_, n_] = 1; t[n_ /; n >= 0, k_] /; 0 <= k <= 10*n := t[n, k] = Sum[(1/j!)*Product[k - m, {m, 1, j}]*t[n - 1, k - j - 1], {j, 0, 9}]; t[_, _] = 0; a[n_] := Sum[t[n, k], {k, 0, 10*n}]; Table[a[n], {n, 0, 11}] (* Jean-François Alcover, Feb 18 2017 *)
PROG
(PARI) {a(n) = sum(i=n, 10*n, i!*polcoef(sum(j=1, 10, x^j/j!)^n, i))/n!} \\ Seiichi Manyama, May 22 2019
CROSSREFS
The gift scenarios sequences when a gift can be stolen at most s times, for s = 1..9, are A001515, A144416, A144508, A144509, A149187, A281358, A281359, A281360, A281361.
Sequence in context: A242854 A201548 A363197 * A177466 A069878 A235029
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 25 2017
STATUS
approved