login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A201548
Number of ways to place 10 nonattacking wazirs on an n X n toroidal board.
1
0, 0, 0, 0, 10, 308574, 81442802, 5296005568, 146127335256, 2309813476870, 24738873315596, 198759048859008, 1279605298916568, 6906427308782106, 32277449304595350, 133788325435448576, 500896430870051174, 1718268150463137018, 5462521782760829320, 16243031089247644800
OFFSET
1,5
COMMENTS
Wazir is a leaper [0,1].
LINKS
FORMULA
Explicit formula: n^20/3628800 - n^18/16128 + 773*n^16/120960 - 761*n^14/1920 + 2820613*n^12/172800 - 356093*n^10/768 + 412940467*n^8/45360 - 2408161207*n^6/20160 + 24029851729*n^4/25200 - 3541971*n^2, n>=11.
G.f.: 2*x^5*(10*x^26 - 615*x^25 + 14637*x^24 - 193410*x^23 + 1669110*x^22 - 10270682*x^21 + 47718030*x^20 - 174153546*x^19 + 511148331*x^18 - 1213451007*x^17 + 2302816572*x^16 - 3418379599*x^15 + 4006461091*x^14 - 4626995415*x^13 + 8410419611*x^12 - 19068629603*x^11 + 33871890471*x^10 - 39181017568*x^9 + 18018811352*x^8 - 5120263515*x^7 - 178499919965*x^6 - 123414145507*x^5 - 25801931589*x^4 - 1825246983*x^3 - 37482424*x^2 - 154182*x - 5)/(x-1)^21.
MATHEMATICA
CoefficientList[Series[2 x^4 (10 x^26 - 615 x^25 + 14637 x^24 - 193410 x^23 + 1669110 x^22 - 10270682 x^21 + 47718030 x^20 - 174153546 x^19 + 511148331 x^18 - 1213451007 x^17 + 2302816572 x^16 - 3418379599 x^15 + 4006461091 x^14 - 4626995415 x^13 + 8410419611 x^12 - 19068629603 x^11 + 33871890471 x^10 - 39181017568 x^9 + 18018811352 x^8 - 5120263515 x^7 - 178499919965 x^6 - 123414145507 x^5 - 25801931589 x^4 - 1825246983 x^3 - 37482424 x^2-154182 x - 5) / (x - 1)^21, {x, 0, 50}], x] (* Vincenzo Librandi, Jun 04 2013 *)
KEYWORD
nonn,easy
AUTHOR
Vaclav Kotesovec, Dec 02 2011
STATUS
approved