Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Sep 12 2015 11:00:28
%S 0,0,0,0,10,308574,81442802,5296005568,146127335256,2309813476870,
%T 24738873315596,198759048859008,1279605298916568,6906427308782106,
%U 32277449304595350,133788325435448576,500896430870051174,1718268150463137018,5462521782760829320,16243031089247644800
%N Number of ways to place 10 nonattacking wazirs on an n X n toroidal board.
%C Wazir is a leaper [0,1].
%H Vincenzo Librandi, <a href="/A201548/b201548.txt">Table of n, a(n) for n = 1..1000</a>
%H V. Kotesovec, <a href="https://oeis.org/wiki/User:Vaclav_Kotesovec">Non-attacking chess pieces</a>
%F Explicit formula: n^20/3628800 - n^18/16128 + 773*n^16/120960 - 761*n^14/1920 + 2820613*n^12/172800 - 356093*n^10/768 + 412940467*n^8/45360 - 2408161207*n^6/20160 + 24029851729*n^4/25200 - 3541971*n^2, n>=11.
%F G.f.: 2*x^5*(10*x^26 - 615*x^25 + 14637*x^24 - 193410*x^23 + 1669110*x^22 - 10270682*x^21 + 47718030*x^20 - 174153546*x^19 + 511148331*x^18 - 1213451007*x^17 + 2302816572*x^16 - 3418379599*x^15 + 4006461091*x^14 - 4626995415*x^13 + 8410419611*x^12 - 19068629603*x^11 + 33871890471*x^10 - 39181017568*x^9 + 18018811352*x^8 - 5120263515*x^7 - 178499919965*x^6 - 123414145507*x^5 - 25801931589*x^4 - 1825246983*x^3 - 37482424*x^2 - 154182*x - 5)/(x-1)^21.
%t CoefficientList[Series[2 x^4 (10 x^26 - 615 x^25 + 14637 x^24 - 193410 x^23 + 1669110 x^22 - 10270682 x^21 + 47718030 x^20 - 174153546 x^19 + 511148331 x^18 - 1213451007 x^17 + 2302816572 x^16 - 3418379599 x^15 + 4006461091 x^14 - 4626995415 x^13 + 8410419611 x^12 - 19068629603 x^11 + 33871890471 x^10 - 39181017568 x^9 + 18018811352 x^8 - 5120263515 x^7 - 178499919965 x^6 - 123414145507 x^5 - 25801931589 x^4 - 1825246983 x^3 - 37482424 x^2-154182 x - 5) / (x - 1)^21, {x, 0, 50}], x] (* _Vincenzo Librandi_, Jun 04 2013 *)
%Y Cf. A201236, A201237, A201238, A201239, A201240, A201241, A201242, A201547.
%K nonn,easy
%O 1,5
%A _Vaclav Kotesovec_, Dec 02 2011