login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A201546
The number of permutations of {1,2,...,2n} that contain a cycle of length greater than n.
2
1, 14, 444, 25584, 2342880, 312888960, 57424792320, 13869128448000, 4264876094976000, 1627055289796608000, 754132445894209536000, 417405110861381271552000, 271933770461631065948160000, 205985221930119691492392960000, 179512031423815845458883379200000
OFFSET
1,2
COMMENTS
(2n)!*(H(2n)-H(n)) where H(n) is the harmonic number. See "One Hundred Prisoners" in Wikipedia reference below.
REFERENCES
Richcard Stanley, Enumerative Combinatorics Volume 1 second edition, Cambridge Univ. Press, 2011, page 194 solution 119.
FORMULA
The E.g.f. for the number of n-permutations that have a cycle of length greater than k is G(x)=1/(1-x) - exp(A(x)) where A(x)=Sum_{j=1..k}x^j/j.
a(n)/(2n)! is the coefficient of x^(2n) in G(x).
a(n) = Sum_{k=n+1..2n} C(2n,k)*(k-1)!*(2n-k)! - Geoffrey Critzer, Jun 01 2013
a(n) ~ sqrt(Pi)*log(2)*2^(2*n+1)*n^(2*n+1/2)/exp(2*n). - Vaclav Kotesovec, Sep 29 2013
EXAMPLE
a(2)=14 because there are 6 permutations of {1,2,3,4} that contain a cycle of length four and 8 that contain a cycle of length three. 6+8=14.
MAPLE
a:= proc(n) option remember; `if`(n<2, n,
(6-12*n+8*n^2)*a(n-1)-4*(n-1)^2*(2*n-3)^2*a(n-2))
end:
seq(a(n), n=1..20); # Alois P. Heinz, Jun 13 2013
MATHEMATICA
Drop[Table[a = Sum[x^j/j, {j, 1, n}]; Coefficient[Series[1/(1 - x) - Exp[a], {x, 0, 40}], x^(2 n)]*(2 n)!, {n, 1, 40}], -20]
CROSSREFS
Sequence in context: A033815 A187358 A103916 * A305115 A282245 A319096
KEYWORD
nonn
AUTHOR
Geoffrey Critzer, Dec 02 2011
STATUS
approved