login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A187358
Catalan trisection: A000108(3*n+1), n>=0.
5
1, 14, 429, 16796, 742900, 35357670, 1767263190, 91482563640, 4861946401452, 263747951750360, 14544636039226909, 812944042149730764, 45950804324621742364, 2622127042276492108820, 150853479205085351660700, 8740328711533173390046320, 509552245179617138054608572, 29869166945772625950142417512
OFFSET
0,2
COMMENTS
See the comment under A187357 for the o.g.f.s for the general trisection of a sequence.
FORMULA
a(n) = C(3*n+1), n>=0, with C(n) = A000108(n) (Catalan).
O.g.f.: (sqrt(2*sqrt(1+4*x^(1/3)+16*x^(2/3))-(1+8*x^(1/3))) - sqrt(1-4*x^(1/3)))/(6*x^(2/3)).
From Ilya Gutkovskiy, Jan 13 2017: (Start)
E.g.f.: 3F3(1/2,5/6,7/6; 1,4/3,5/3; 64*x).
a(n) ~ 4^(3*n+1)/(3*sqrt(3*Pi)*n^(3/2)). (End)
Sum_{n>=0} a(n)/4^n = 2*sqrt(2*sqrt(3) - 3)/3. - Amiram Eldar, Mar 16 2022
a(n) = Product_{1 <= i <= j <= 3*n} (3*i + j + 2)/(3*i + j - 1). - Peter Bala, Feb 22 2023
MATHEMATICA
Table[CatalanNumber[3*n+1], {n, 0, 20}] (* Amiram Eldar, Mar 16 2022 *)
CROSSREFS
Cf. A000108, A024492, A048990, A187357 (C(3*n)), A187359 (C(3*n+2)).
Sequence in context: A258392 A269504 A033815 * A103916 A201546 A305115
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Mar 09 2011
STATUS
approved