login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A187359 Catalan trisection: A000108(3*n + 2)/2, n>=0. 4
1, 21, 715, 29393, 1337220, 64822395, 3282060210, 171529806825, 9183676536076, 501121108325684, 27767032438524099, 1558142747453650631, 88366931393503350700, 5056959295818949067010, 291650059796498346544020, 16934386878595523443214745, 989130828878080326811887228, 58078935727891217125276922940, 3426228463922436748774829232156, 202972497563788492865321721683556 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
See the comment under A187357 for the o.g.f.s of the general trisection of a sequence.
The sequence C(3*n+2) starts as 2, 42, 1430, 58786, 2674440, 129644790, 6564120420, 343059613650, ...
LINKS
FORMULA
a(n) = C(3*n+2)/2, n>=0, with C(n) = A000108(n).
O.g.f.: (3 - sqrt(1 - 4*x^(1/3)) - sqrt(2)*sqrt(sqrt(1 + 4*x^(1/3) + 16*x^(2/3)) +
(1 + 2*x^(1/3))))/(12*x).
From Ilya Gutkovskiy, Jan 21 2017: (Start)
E.g.f.: 3F3(5/6,7/6,3/2; 4/3,5/3,2; 64*x).
a(n) ~ 8^(2*n+1)/(3*sqrt(3*Pi)*n^(3/2)). (End)
Sum_{n>=0} a(n)/4^n = 1 - sqrt(3+2*sqrt(3))/3. - Amiram Eldar, Mar 16 2022
a(n) = (1/2)*Product_{1 <= i <= j <= 3*n+1} (3*i + j + 2)/(3*i + j - 1). - Peter Bala, Feb 22 2023
MATHEMATICA
Table[CatalanNumber[3*n+2]/2, {n, 0, 20}] (* Amiram Eldar, Mar 16 2022 *)
CROSSREFS
Cf. A000108, A024492, A048990, A187357 (C(3*n)), A187358 (C(3*n+1)).
Sequence in context: A276021 A100713 A056565 * A009167 A012479 A317824
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Mar 09 2011
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 9 07:10 EST 2023. Contains 367689 sequences. (Running on oeis4.)