login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A056565
Fibonomial coefficients.
5
1, 21, 714, 19635, 582505, 16776144, 488605194, 14169550626, 411591708660, 11948265189630, 346934172869802, 10072785423545712, 292460526776698763, 8491396839675395415, 246543315138161480670, 7158243695757340957617
OFFSET
1,2
FORMULA
a(n) = A010048(n+7, 7) =: Fibonomial(n+7, 7).
G.f.: 1/p(8, n) with p(8, n) = 1 - 21*x - 273*x^2 + 1092*x^3 + 1820*x^4 - 1092*x^5 - 273*x^6 + 21*x^7 + x^8 = (1 + x - x^2) * (1 - 4*x - x^2) * (1 + 11*x - x^2) * (1 - 29*x - x^2) (n=8 row polynomial of signed Fibonomial triangle A055870; see this entry for Knuth and Riordan references).
a(n) = 29*a(n-1) + a(n-2) + ((-1)^n) * A001657(n), n >= 2, a(0)=1, a(1)=21.
MAPLE
with(combinat):
a:= n-> 1/3120 *fibonacci(n) *fibonacci(n+1) *fibonacci(n+2) *fibonacci(n+3) *fibonacci(n+4) *fibonacci(n+5) *fibonacci(n+6):
seq(a(n), n=1..17); # Zerinvary Lajos, Oct 07 2007
MATHEMATICA
(Times@@@Partition[Fibonacci[Range[30]], 7, 1])/3120 (* Harvey P. Dale, Apr 10 2011 *)
PROG
(Magma) [ &*[Fibonacci(n+k): k in [0..6]]/3120: n in [1..16] ]; // Bruno Berselli, Apr 11 2011
(PARI) b(n, k)=prod(j=1, k, fibonacci(n+j)/fibonacci(j));
vector(20, n, b(n-1, 7)) \\ Joerg Arndt, May 08 2016
CROSSREFS
Sequence in context: A243746 A276021 A100713 * A187359 A009167 A012479
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Jul 10 2000
STATUS
approved