The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A001657 Fibonomial coefficients: column 5 of A010048. (Formerly M4568 N1945) 8
 1, 8, 104, 1092, 12376, 136136, 1514513, 16776144, 186135312, 2063912136, 22890661872, 253854868176, 2815321003313, 31222272414424, 346260798314872, 3840089017377228, 42587248616222024, 472299787252290712, 5237885063192296801, 58089034826620525728 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 REFERENCES N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS T. D. Noe, Table of n, a(n) for n = 0..200 A. Brousseau, A sequence of power formulas, Fib. Quart., 6 (1968), 81-83. Alfred Brousseau, Fibonacci and Related Number Theoretic Tables, Fibonacci Association, San Jose, CA, 1972. See p. 17. Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009. Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992 Index entries for linear recurrences with constant coefficients, signature (8,40,-60,-40,8,1). FORMULA a(n) = A010048(5+n, 5) (or fibonomial(5+n, 5)). G.f.: 1/(1-8*x-40*x^2+60*x^3+40*x^4-8*x^5-x^6) = 1/((1-x-x^2)*(1+4*x-x^2)*(1-11*x-x^2)) (see Comments to A055870). a(n) = 11*a(n-1) + a(n-2) + ((-1)^n)*fibonomial(n+3, 3), n >= 2; a(0)=1, a(1)=8; fibonomial(n+3, 3)= A001655(n). a(n) = Fibonacci(n+3)*(Fibonacci(n+3)^4-1)/30. - Gary Detlefs, Apr 24 2012 a(n) = (A049666(n+3) + 2*(-1)^n*A001076(n+3) - 3*A000045(n+3))/150, n >= 0, with A049666(n) = F(5*n)/5, A001076(n) = F(3*n)/2 and A000045(n) = F(n). From the partial fraction decomposition of the o.g.f. and recurrences. - Wolfdieter Lang, Aug 23 2012 a(n) = a(-6-n) * (-1)^n for all n in Z. - Michael Somos, Sep 19 2014 0 = a(n)*(-a(n+1) - 3*a(n+2)) + a(n+1)*(-8*a(n+1) + a(n+2)) for all n in Z. - Michael Somos, Sep 19 2014 EXAMPLE G.f. = 1 + 8*x + 104*x^2 + 1092*x^3 + 12376*x^4 + 136136*x^5 + 1514513*x^6 + ... MAPLE with(combinat) : a:=n-> 1/30*fibonacci(n)*fibonacci(n+1)*fibonacci(n+2)*fibonacci(n+3)*fibonacci(n+4): seq(a(n), n=1..19); # Zerinvary Lajos, Oct 07 2007 A001657:=-1/(z**2+11*z-1)/(z**2-4*z-1)/(z**2+z-1); # Simon Plouffe in his 1992 dissertation MATHEMATICA f[n_] := Times @@ Fibonacci[Range[n + 1, n + 5]]/30; t = Table[f[n], {n, 0, 20}] (* Vladimir Joseph Stephan Orlovsky, Feb 12 2010 *) LinearRecurrence[{8, 40, -60, -40, 8, 1}, {1, 8, 104, 1092, 12376, 136136}, 20] (* Harvey P. Dale, Nov 30 2019 *) PROG (PARI) a(n)=(n->(n^5-n)/30)(fibonacci(n+3)) \\ Charles R Greathouse IV, Apr 24 2012 (PARI) b(n, k)=prod(j=1, k, fibonacci(n+j)/fibonacci(j)); vector(20, n, b(n-1, 5)) \\ Joerg Arndt, May 08 2016 CROSSREFS Cf. A010048, A001654-A001658, A065563. Sequence in context: A164760 A335608 A109774 * A282185 A354064 A106260 Adjacent sequences: A001654 A001655 A001656 * A001658 A001659 A001660 KEYWORD nonn,easy AUTHOR N. J. A. Sloane EXTENSIONS Corrected and extended by Wolfdieter Lang, Jun 27 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 14 01:00 EDT 2024. Contains 375146 sequences. (Running on oeis4.)