The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A049666 a(n) = Fibonacci(5*n)/5. 33
 0, 1, 11, 122, 1353, 15005, 166408, 1845493, 20466831, 226980634, 2517253805, 27916772489, 309601751184, 3433536035513, 38078498141827, 422297015595610, 4683345669693537, 51939099382224517, 576013438874163224 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS For more information about this type of recurrence follow the Khovanova link and see A054413, A086902 and A178765. - Johannes W. Meijer, Jun 12 2010 For n >= 2, a(n) equals the permanent of the (n-1) X (n-1) tridiagonal matrix with 11's along the main diagonal and 1's along the subdiagonal and the superdiagonal. - John M. Campbell, Jul 08 2011 For n >= 1, a(n) equals the number of words of length n-1 on alphabet {0,1,...,11} avoiding runs of zeros of odd lengths. - Milan Janjic, Jan 28 2015 For n >= 1, a(n) equals the denominator of the continued fraction [11, 11, ..., 11] (with n copies of 11). The numerator of that continued fraction is a(n+1). - Greg Dresden and Shaoxiong Yuan, Jul 26 2019 From Michael A. Allen, Mar 30 2023: (Start) Also called the 11-metallonacci sequence; the g.f. 1/(1-k*x-x^2) gives the k-metallonacci sequence. a(n+1) is the number of tilings of an n-board (a board with dimensions n X 1) using unit squares and dominoes (with dimensions 2 X 1) if there are 11 kinds of squares available. (End) LINKS G. C. Greubel, Table of n, a(n) for n = 0..950 Michael A. Allen and Kenneth Edwards, Fence tiling derived identities involving the metallonacci numbers squared or cubed, Fib. Q. 60:5 (2022) 5-17. Tanya Khovanova, Recursive Sequences Kai Wang, On k-Fibonacci Sequences And Infinite Series List of Results and Examples, 2020. Shaoxiong Yuan, Generalized Identities of Certain Continued Fractions, arXiv:1907.12459 [math.NT], 2019. Index entries for linear recurrences with constant coefficients, signature (11,1). FORMULA G.f.: x/(1 - 11*x - x^2). a(n) = A102312(n)/5. a(n) = 11*a(n-1) + a(n-2) for n > 1, a(0)=0, a(1)=1. With a=golden ratio and b=1-a, a(n) = (a^(5n)-b^(5n))/(5*sqrt(5)). - Mario Catalani (mario.catalani(AT)unito.it), Jul 24 2003 a(n) = F(n, 11), the n-th Fibonacci polynomial evaluated at x=11. - T. D. Noe, Jan 19 2006 a(n) = ((11+sqrt(125))^n-(11-sqrt(125))^n)/(2^n*sqrt(125)). - Al Hakanson (hawkuu(AT)gmail.com), Jan 12 2009 From Johannes W. Meijer, Jun 12 2010: (Start) a(2n) = 11*A049670(n), a(2n+1) = A097843(n). a(3n+1) = A041227(5n), a(3n+2) = A041227(5n+3), a(3n+3) = 2*A041227(5n+4). Lim_{k->infinity} a(n+k)/a(k) = (A001946(n) + A049666(n)*sqrt(125))/2. Lim_{n->infinity} A001946(n)/A049666(n) = sqrt(125). (End) a(n) = F(n) + (-1)^n*5*F(n)^3 + 5*F(n)^5, n >= 0. See the D. Jennings formula given in a comment on A111125, where also the reference is given. - Wolfdieter Lang, Aug 31 2012 a(-n) = -(-1)^n * a(n). - Michael Somos, May 28 2014 E.g.f.: (exp((1/2)*(11-5*sqrt(5))*x)*(-1 + exp(5*sqrt(5)*x)))/(5*sqrt(5)). - Stefano Spezia, Aug 02 2019 EXAMPLE G.f. = x + 11*x^2 + 122*x^3 + 1353*x^4 + 15005*x^5 + 166408*x^6 + ... MAPLE A049666 := proc(n) combinat[fibonacci](5*n)/5 ; end proc: # R. J. Mathar, May 07 2024 MATHEMATICA Table[Fibonacci[5*n]/5, {n, 0, 100}] (* T. D. Noe, Oct 29 2009 *) a[ n_] := Fibonacci[n, 11]; (* Michael Somos, May 28 2014 *) PROG (MuPAD) numlib::fibonacci(5*n)/5 \$ n = 0..25; // Zerinvary Lajos, May 09 2008 (Sage) from sage.combinat.sloane_functions import recur_gen3 it = recur_gen3(0, 1, 11, 11, 1, 0) [next(it) for i in range(1, 22)] # Zerinvary Lajos, Jul 09 2008 (Sage) [lucas_number1(n, 11, -1) for n in range(0, 19)] # Zerinvary Lajos, Apr 27 2009 (Sage) [fibonacci(5*n)/5 for n in range(0, 19)] # Zerinvary Lajos, May 15 2009 (PARI) a(n)=fibonacci(5*n)/5 \\ Charles R Greathouse IV, Feb 03 2014 (Magma) [Fibonacci(5*n)/5: n in [0..30]]; // G. C. Greubel, Dec 02 2017 CROSSREFS A column of array A028412. Cf. A000045, A102312, A243399. Row n=11 of A073133, A172236 and A352361, and column k=11 of A157103. Sequence in context: A293805 A358697 A288791 * A163462 A334000 A041222 Adjacent sequences: A049663 A049664 A049665 * A049667 A049668 A049669 KEYWORD nonn,easy AUTHOR Clark Kimberling STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 29 07:06 EDT 2024. Contains 372926 sequences. (Running on oeis4.)