login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A334000
a(n) = (2*n+1)!! * Sum_{k=0..n} k/(2*k+1).
1
0, 1, 11, 122, 1518, 21423, 340869, 6058980, 119218860, 2575293165, 60628447215, 1545696702270, 42437227275450, 1248581232985275, 39197268410049225, 1307969571015966600, 46233376386927067800, 1725823391345415833625, 67845041198360981737875
OFFSET
0,3
FORMULA
a(n) = (2*n+1)!!*(Sum_{k=0..n} k/(2*k+1)).
Recurrence: a(n) = 4*n*a(n-1)-(2*n-1)^2*a(n-2)+(2*n-1)!!.
EXAMPLE
a(3) = 122 since 0/1 + 1/3 + 2/5 + 3/7 = 122/105 = 122/(7!!).
MATHEMATICA
Table[Sum[k/(2*k+1), {k, 0, n}], {n, 0, 18}]*Table[Product[2*j+1, {j, 0, n}], {n, 0, 18}]
FullSimplify[Table[((n+1)/2 - HarmonicNumber[n + 1/2]/4 - Log[2]/2) * (2*n+1)!!, {n, 0, 20}]] (* Vaclav Kotesovec, Apr 14 2020 *)
CROSSREFS
Cf. A004041.
Sequence in context: A288791 A049666 A163462 * A041222 A097708 A015499
KEYWORD
nonn,easy
AUTHOR
Greg Huber, Apr 11 2020
STATUS
approved