login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A049670 a(n) = F(10n)/55, where F = A000045 (the Fibonacci sequence). 9
0, 1, 123, 15128, 1860621, 228841255, 28145613744, 3461681649257, 425758697244867, 52364858079469384, 6440451785077489365, 792123204706451722511, 97424713727108484379488, 11982447665229637126954513, 1473743638109518258131025611, 181258485039805516112989195640 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Chebyshev polynomials S(n-1,123).

Used for all positive integer solutions of Pell equation x^2 - 5*(5*y)^2 = -4. See A097842 with A097843.

This is the k = 10 member of the k-family of sequences {F(k*n)/F(k)}, n >= 0 for k >= 1, with o.g.f. x/(1 - L(k)*x + (-1)^k*x^2). Proof: Binet-de Moivre formula for F and L. See also A028412. - Wolfdieter Lang, Aug 26 2012

LINKS

Robert Israel, Table of n, a(n) for n = 0..383

Tanya Khovanova, Recursive Sequences

Index entries for sequences related to Chebyshev polynomials.

Index entries for linear recurrences with constant coefficients, signature (123,-1).

FORMULA

G.f.: x/(1-123*x+x^2), 123=L(10)=A000032(10) (Lucas).

a(n+1) = S(n, 123) = U(n, 123/2) = S(2*n+1, 5*sqrt(5))/(5*sqrt(5)), n>=0, with S(n, x) = U(n, x/2) Chebyshev's polynomials of the second kind, A049310. S(-1, x)= 0 = U(-1, x).

a(n) = 123*a(n-1)-a(n-2), n >= 2; a(0)=0, a(1)=1.

a(n) = (ap^n - am^n)/(ap-am) with ap := (123+55*sqrt(5))/2 and am := (123-55*sqrt(5))/2 = 1/ap.

From Peter Bala, Nov 29 2013: (Start)

a(n) = 1/(11*55)*(F(10*n + 5) - F(10*n - 5)).

sum {n >= 1} 1/( 11*a(n) + 1/(11*a(n)) ) = 1/11. Compare with A001906 and A049660. (End)

From Peter Bala, Apr 03 2015: (Start)

For integer k, 1 + k*(22 - k)*Sum_{n >= 1} a(n)*x^(2*n) = ( 1 + k/5*Sum_{n >= 1} Fibonacci(5*n)*x^n )*( 1 + k/5*Sum_{n >= 1} Fibonacci(5*n)*(-x)^n ).

1 + 4*Sum_{n >= 1} a(n)*x^(2*n) = ( 1 + 2/5*Sum_{n >= 1} Fibonacci(5*n+5)*x^n )*( 1 + 2/5*Sum_{n >= 1} Fibonacci(5*n+5)*(-x)^n ) = ( 1 + 2/5*Sum_{n >= 1} Fibonacci(5*n-5)*x^n )*( 1 + 2/5*Sum_{n >= 1} Fibonacci(5*n-5)*(-x)^n ).

1 + 25*Sum_{n >= 1} a(n)*x^(2*n) = ( 1 + Sum_{n >= 1} Fibonacci(5*n+3)*x^n )*( 1 + Sum_{n >= 1} Fibonacci(5*n+3)*(-x)^n ) = ( 1 + Sum_{n >= 1} Fibonacci(5*n-3)*x^n )*( 1 + Sum_{n >= 1} Fibonacci(5*n-3)*(-x)^n ).

1 + 100*Sum_{n >= 1} a(n)*x^(2*n) = ( 1 + 2*Sum_{n >= 1} Fibonacci(5*n+1)*x^n )*( 1 + 2*Sum_{n >= 1} Fibonacci(5*n+1)*(-x)^n ) = ( 1 + 2*Sum_{n >= 1} Fibonacci(5*n-1)*x^n )*( 1 + 2*Sum_{n >= 1} Fibonacci(5*n-1)*(-x)^n ).

1 + 125*Sum_{n >= 1} a(n)*x^(2*n) = ( 1 + Sum_{n >= 1} Lucas(5*n)*x^n )*( 1 + Sum_{n >= 1} Lucas(5*n)*(-x)^n ). (End)

MAPLE

seq(combinat:-fibonacci(10*n)/55, n=0..20); # Robert Israel, Apr 03 2015

MATHEMATICA

Table[Fibonacci[10 n]/55, {n, 12}] (* Michael De Vlieger, Apr 03 2015 *)

PROG

(Mupad) numlib::fibonacci(10*n)/55 $ n = 0..25; # Zerinvary Lajos, May 09 2008

(PARI) a(n)=fibonacci(10*n)/55 \\ Charles R Greathouse IV, Oct 07 2016

CROSSREFS

A column of array A028412.

Sequence in context: A135479 A095761 A121917 * A181006 A289331 A033522

Adjacent sequences:  A049667 A049668 A049669 * A049671 A049672 A049673

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling

EXTENSIONS

More terms from James A. Sellers, Jan 20 2000

Chebyshev and Pell comments from Wolfdieter Lang, Sep 10 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified August 24 05:48 EDT 2017. Contains 291052 sequences.