login
A049671
a(n) = (F(n) + F(4*n))/2, where F=A000045 (the Fibonacci sequence).
1
0, 2, 11, 73, 495, 3385, 23188, 158912, 1089165, 7465193, 51167105, 350704411, 2403763560, 16475640166, 112925717047, 774004378265, 5305104929355, 36361730124869, 249227005940924, 1708227311455444
OFFSET
0,2
FORMULA
G.f.: x*(-2+5*x+x^2) / ( (x^2-7*x+1)*(x^2+x-1) ). - R. J. Mathar, Oct 26 2015
MATHEMATICA
Table[(Fibonacci[n]+Fibonacci[4n])/2, {n, 0, 20}] (* or *) LinearRecurrence[ {8, -7, -6, 1}, {0, 2, 11, 73}, 20] (* Harvey P. Dale, Oct 22 2017 *)
PROG
(PARI) for(n=0, 30, print1((fibonacci(4*n) + fibonacci(n))/2, ", ")) \\ G. C. Greubel, Dec 02 2017
(Magma) [(Fibonacci(4*n) + Fibonacci(n))/2: n in [0..30]]; // G. C. Greubel, Dec 02 2017
CROSSREFS
Sequence in context: A371518 A363389 A323842 * A074609 A299786 A335310
KEYWORD
nonn,easy
STATUS
approved