login
A049672
a(n) = (F(4*n) - F(n))/2, where F=A000045 (the Fibonacci sequence).
1
0, 1, 10, 71, 492, 3380, 23180, 158899, 1089144, 7465159, 51167050, 350704322, 2403763416, 16475639933, 112925716670, 774004377655, 5305104928368, 36361730123272, 249227005938340, 1708227311451263
OFFSET
0,3
FORMULA
G.f.: x*(-1-2*x+2*x^2) / ( (x^2+x-1)*(x^2-7*x+1) ). - R. J. Mathar, Oct 26 2015
MATHEMATICA
LinearRecurrence[{8, -7, -6, 1}, {0, 1, 10, 71}, 50] (* or *) Table[(1/2) *(Fibonacci[4*n] - Fibonacci[n]), {n, 0, 30}] (* G. C. Greubel, Dec 02 2017 *)
PROG
(PARI) for(n=0, 30, print1((fibonacci(4*n) - fibonacci(n))/2, ", ")) \\ G. C. Greubel, Dec 02 2017
(Magma) [(Fibonacci(4*n) - Fibonacci(n))/2: n in [0..30]]; // G. C. Greubel, Dec 02 2017
CROSSREFS
Sequence in context: A224292 A016098 A129275 * A221548 A037579 A166791
KEYWORD
nonn,easy
STATUS
approved