login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A049675
a(n) = (2*F(3*n) - F(n))/3, where F=A000045 (the Fibonacci sequence).
1
0, 1, 5, 22, 95, 405, 1720, 7293, 30905, 130934, 554675, 2349689, 9953520, 42163913, 178609405, 756601910, 3205017655, 13576673517, 57511713320, 243623529381, 1032005835025, 4371646876246, 18518593350955
OFFSET
0,3
FORMULA
G.f.: -x*(x-1)*(1+x) / ( (x^2+4*x-1)*(x^2+x-1) ). - R. J. Mathar, Nov 10 2013
a(n) = F(n) + 2*Sum_{k=1..n} F(n-k)*F(3*k), where F=A000045 (the Fibonacci sequence). - Yomna Bakr and Greg Dresden, Jun 17 2024
MATHEMATICA
Table[(2Fibonacci[3n]-Fibonacci[n])/3, {n, 0, 30}] (* Harvey P. Dale, Dec 08 2012 *)
LinearRecurrence[{5, -2, -5, -1}, {0, 1, 5, 22}, 30] (* G. C. Greubel, Dec 02 2017 *)
PROG
(PARI) for(n=0, 30, print1((2*fibonacci(3*n) - fibonacci(n))/3, ", ")) \\ G. C. Greubel, Dec 02 2017
(Magma) [(2*Fibonacci(3*n) - Fibonacci(n))/3: n in [0..30]]; // G. C. Greubel, Dec 02 2017
CROSSREFS
Sequence in context: A049652 A026877 A128746 * A053154 A141222 A127360
KEYWORD
nonn
STATUS
approved