This site is supported by donations to The OEIS Foundation.

The October issue of the Notices of the Amer. Math. Soc. has an article about the OEIS.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A049677 a(n) = (F(8*n+6) + F(8*n+1))/3, where F=A000045 (the Fibonacci sequence). 1
 3, 137, 6436, 302355, 14204249, 667297348, 31348771107, 1472724944681, 69186723628900, 3250303285613619, 152695067700211193, 7173417878624312452, 336997945227642474051, 15831730007820571967945, 743754312422339240019364, 34940620953842123708942163, 1641465430518157475080262297 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS Indranil Ghosh, Table of n, a(n) for n = 0..596 Tanya Khovanova, Recursive Sequences Index entries for linear recurrences with constant coefficients, signature (47,-1). FORMULA From Philippe Deléham, Nov 18 2008: (Start) a(n) = 47*a(n-1) - a(n-2), a(0)=3, a(1)=137. G.f.: (3-4*x)/(1-47*x+x^2). (End) EXAMPLE a(2) = (F(8 * 2 + 6) + F(8 * 2 + 1)) / 3 = (F(22) + F(17)) / 3 = (17711 + 1597) / 3 = 19308 / 3 = 6436. - Indranil Ghosh, Feb 05 2017 MATHEMATICA Table[(Fibonacci[8*n+6] + Fibonacci[8*n+1])/3, {n, 0, 30}] (* or *) LinearRecurrence[{47, -1}, {3, 137}, 30] (* G. C. Greubel, Dec 02 2017 *) PROG (PARI) a(n) = (fibonacci(8*n+6)+fibonacci(8*n+1))/3; \\ Michel Marcus, Feb 05 2017 (MAGMA) [(Fibonacci(8*n+6) + Fibonacci(8*n+1))/3: n in [0..30]]; // G. C. Greubel, Dec 02 2017 CROSSREFS Cf. A049676, A049678, A049679. Sequence in context: A037120 A082923 A231904 * A030247 A139956 A236193 Adjacent sequences:  A049674 A049675 A049676 * A049678 A049679 A049680 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 22 19:01 EDT 2018. Contains 315270 sequences. (Running on oeis4.)