login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A236193
Primes p with prime(p)^2 + (2*p)^2 and p^2 + (2*prime(p))^2 both prime.
5
3, 139, 179, 233, 491, 929, 1217, 1429, 1597, 1613, 1987, 2243, 3061, 3499, 3529, 4507, 5737, 5779, 6329, 7247, 7823, 8263, 8839, 9941, 10259, 11317, 11383, 12157, 12421, 13093, 13219, 13367, 14449, 14669, 15101, 15877, 17449, 18523, 18593, 19051
OFFSET
1,1
COMMENTS
By part (i) of the conjecture in A236192, this sequence should have infinitely many terms.
EXAMPLE
a(1) = 3 since prime(2)^2 + (2*2)^2 = 25 is composite, but prime(3)^2 + (2*3)^2 = 5^2 + 6^2 = 61 and 3^2 + (2*prime(3))^2 = 3^2 + 10^2 = 109 are both prime.
MATHEMATICA
p[n_]:=PrimeQ[Prime[n]^2+(2*n)^2]&&PrimeQ[n^2+(2*Prime[n])^2]
n=0; Do[If[p[Prime[k]], n=n+1; Print[n, " ", Prime[k]]], {k, 1, 10^6}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Jan 20 2014
STATUS
approved