login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A236143
Odd primes p with prime(p-1) - (p-1) and prime(p-1) - 2*prime((p-1)/2) both prime.
2
7, 11, 31, 67, 179, 193, 197, 281, 347, 349, 563, 599, 757, 1123, 1453, 1543, 1933, 1987, 2083, 2531, 2971, 3037, 3259, 3547, 3583, 3701, 3919, 4027, 4483, 5023, 5581, 5591, 5647, 5981, 6449, 7207, 7297, 7603, 8291, 9049
OFFSET
1,1
COMMENTS
By part (i) of the conjecture in A236138, this sequence should have infinitely many terms.
EXAMPLE
a(1) = 7 with prime(6) - 6 = 13 - 6 = 7 and prime(6) - 2*prime(3) = 13 - 2*5 = 3 both prime.
MATHEMATICA
PQ[n_]:=n>0&&PrimeQ[n]
p[n_]:=PrimeQ[Prime[n-1]-(n-1)]&&PQ[Prime[n-1]-2*Prime[(n-1)/2]]
n=0; Do[If[p[Prime[k]], n=n+1; Print[n, " ", Prime[k]]], {k, 2, 10^5}]
PROG
(PARI) s=[]; forprime(p=3, 10000, if(isprime(prime(p-1)-(p-1)) && isprime(prime(p-1)-2*prime((p-1)/2)), s=concat(s, p))); s \\ Colin Barker, Jan 19 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Jan 19 2014
STATUS
approved