login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A235925 Primes p with q = prime(p) - p + 1 and r = prime(q) - q + 1 both prime. 8
2, 3, 5, 17, 23, 41, 61, 83, 181, 271, 311, 337, 757, 953, 1277, 1451, 1753, 1777, 2027, 2081, 2341, 2707, 2713, 2749, 2819, 2861, 2879, 2909, 2971, 3121, 3163, 3329, 3697, 3779, 3833, 3881, 3907, 4027, 4051, 4129, 4363, 4549, 5333, 5483, 5659, 5743, 5813, 5897, 6029, 6053 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

By the conjecture in A235924, this sequence should have infinitely many terms.

Conjecture: For any integer m > 1, there are infinitely many chains p(1) < p(2) < ... < p(m) of m primes with p(k+1) = prime(p(k)) - p(k) + 1 for all 0 < k < m.

LINKS

Zhi-Wei Sun, Table of n, a(n) for n = 1..10000

Z.-W. Sun, Problems on combinatorial properties of primes, arXiv:1402.6641, 2014

EXAMPLE

a(1) = 2 since prime(2) - 2 + 1 = 2 is prime.

a(2) = 3 since prime(3) - 3 + 1 = 3 is prime.

a(3) = 5 since 5, prime(5) - 5 + 1 = 7 and prime(7) - 7 + 1 = 11 are all prime.

MATHEMATICA

f[n_]:=Prime[n]-n+1

n=0; Do[If[PrimeQ[f[Prime[k]]]&&PrimeQ[f[f[Prime[k]]]], n=n+1; Print[n, " ", Prime[k]]], {k, 1, 1000}]

bpQ[n_]:=Module[{q=Prime[n]-n+1}, AllTrue[{q, Prime[q]-q+1}, PrimeQ]]; Select[Prime[Range[800]], bpQ](* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Nov 07 2014 *)

CROSSREFS

Cf. A000040, A234695, A235924.

Sequence in context: A240679 A180474 A155978 * A106859 A055472 A077499

Adjacent sequences:  A235922 A235923 A235924 * A235926 A235927 A235928

KEYWORD

nonn

AUTHOR

Zhi-Wei Sun, Jan 17 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 18 09:22 EDT 2020. Contains 337166 sequences. (Running on oeis4.)