login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A055472 Primes of the form k(k+1)/2+2 (i.e., two more than a triangular number). 7
2, 3, 5, 17, 23, 47, 107, 173, 233, 353, 467, 563, 743, 863, 1277, 1433, 1487, 2213, 2417, 2777, 3083, 3323, 4007, 4373, 5153, 7877, 8387, 10733, 11177, 11783, 13043, 13697, 14537, 15053, 15227, 17207, 17393, 17957, 18917, 21323, 22157, 23873 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Equal to primes of the form (k^2+15)/8. Also equal to primes p such that 8*p-15 is a square. - Chai Wah Wu, Jul 14 2014

Primes of A152948. - Klaus Purath, Jan 03 2021

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

MAPLE

P:=proc(n) local i, w; w:=2; for i from 0 by 1 to n do w:=w+i; if isprime(w) then print(w); fi; od; end: P(1000); # Paolo P. Lava, Apr 24 2007

MATHEMATICA

Select[Table[(n^2-n+4)/2, {n, 3000}], PrimeQ] (* Vincenzo Librandi, Jul 14 2012 *)

Select[Accumulate[Range[0, 300]]+2, PrimeQ] (* Harvey P. Dale, Feb 05 2019 *)

PROG

(Python)

import sympy

[n*(n+1)/2+2 for n in range(10**6) if sympy.ntheory.primetest.isprime(n*(n+1)/2+2)] # Chai Wah Wu, Jul 14 2014

CROSSREFS

Cf. A000040, A000217, A022856, A152948.

Sequence in context: A155978 A235925 A106859 * A077499 A127061 A215311

Adjacent sequences:  A055469 A055470 A055471 * A055473 A055474 A055475

KEYWORD

nonn

AUTHOR

Henry Bottomley, Jun 27 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 6 22:42 EST 2021. Contains 349567 sequences. (Running on oeis4.)