The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A152948 a(n) = (n^2 - 3*n + 6)/2. 20
 2, 2, 3, 5, 8, 12, 17, 23, 30, 38, 47, 57, 68, 80, 93, 107, 122, 138, 155, 173, 192, 212, 233, 255, 278, 302, 327, 353, 380, 408, 437, 467, 498, 530, 563, 597, 632, 668, 705, 743, 782, 822, 863, 905, 948, 992, 1037, 1083, 1130, 1178, 1227, 1277, 1328, 1380 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS a(1) = 2; then add 0 to the first number, then 1, 2, 3, 4, ... and so on. Essentially the same as A022856, A089071 and A133263. - R. J. Mathar, Dec 19 2008 First differences are A001477. If we ignore the zero polygonal numbers, then for n >= 3, a(n) is the minimal k such that the k-th n-gonal number is a sum of two n-gonal numbers (see formula and example). - Vladimir Shevelev, Jan 20 2014 Numbers m such that 8m - 15 is a square. - Bruce J. Nicholson, Jul 24 2017 LINKS Michael De Vlieger, Table of n, a(n) for n = 1..10000 E. R. Berlekamp, A contribution to mathematical psychometrics, Unpublished Bell Labs Memorandum, Feb 08 1968 [Annotated scanned copy] Kyu-Hwan Lee, Se-jin Oh, Catalan triangle numbers and binomial coefficients, arXiv:1601.06685 [math.CO], 2016. Ângela Mestre, José Agapito, Square Matrices Generated by Sequences of Riordan Arrays, J. Int. Seq., Vol. 22 (2019), Article 19.8.4. Index entries for linear recurrences with constant coefficients, signature (3,-3,1). FORMULA a(n) = a(n-1) + n-2 (with a(1)=2). - Vincenzo Librandi, Nov 26 2010 a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). G.f.: -x*(2 - 4*x + 3*x^2) /  (x-1)^3. - R. J. Mathar, Oct 30 2011 If the zero polygonal numbers are ignored, then for n >= 4, the a(n)-th n-gonal number is a sum of the (a(n)-1)-th n-gonal number and the (n-1)-th n-gonal number. - Vladimir Shevelev, Jan 20 2014 EXAMPLE a(7)=17. This means that the 17th (positive) heptagonal number 697 (cf. A000566) is the smallest heptagonal number which is a sum of two (positive) heptagonal numbers. We have 697 = 616 + 81 with indices 17, 16, 6 in A000566. - Vladimir Shevelev, Jan 20 2014 MATHEMATICA Array[(#^2 - 3 # + 6)/2 &, 54] (* or *) Rest@ CoefficientList[Series[-x (2 - 4 x + 3 x^2)/(x - 1)^3, {x, 0, 54}], x] (* Michael De Vlieger, Mar 25 2020 *) PROG (Sage) [2+binomial(n, 2) for n in range(0, 54)] # Zerinvary Lajos, Mar 12 2009 (MAGMA) [ (n^2-3*n+6)/2: n in [1..60] ]; (PARI) a(n)=(n^2-3*n+6)/2 \\ Charles R Greathouse IV, Sep 28 2015 CROSSREFS Cf. A000124, A000217, A152947. Sequence in context: A179523 A087729 A039890 * A018136 A243853 A293419 Adjacent sequences:  A152945 A152946 A152947 * A152949 A152950 A152951 KEYWORD nonn,easy,changed AUTHOR Vladimir Joseph Stephan Orlovsky, Dec 15 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 28 17:51 EDT 2020. Contains 333103 sequences. (Running on oeis4.)