login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A152949
a(n) = 3 + binomial(n-1,2).
3
3, 3, 4, 6, 9, 13, 18, 24, 31, 39, 48, 58, 69, 81, 94, 108, 123, 139, 156, 174, 193, 213, 234, 256, 279, 303, 328, 354, 381, 409, 438, 468, 499, 531, 564, 598, 633, 669, 706, 744, 783, 823, 864, 906, 949, 993, 1038, 1084, 1131, 1179, 1228, 1278, 1329, 1381
OFFSET
1,1
COMMENTS
a(1)=3; then add 0 to the first number, then 1,2,3,4,... and so on.
FORMULA
a(n) = a(n-1) + n - 2 (with a(1)=3). - Vincenzo Librandi, Nov 27 2010
G.f.: x*(3-6*x+4*x^2)/(1-x)^3. - Nikita Gogin, Jul 24 2013
a(n) = A016028(n+1) for n >= 2. - Georg Fischer, Oct 28 2018
Sum_{n>=1} 1/a(n) = 1/3 + 2*Pi*tanh(sqrt(23)*Pi/2)/sqrt(23). - Amiram Eldar, Dec 13 2022
MAPLE
seq(coeff(series(x*(4*x^2-6*x+3)/(1-x)^3, x, n+1), x, n), n = 1 .. 55); # Muniru A Asiru, Oct 28 2018
MATHEMATICA
s=3; lst={3}; Do[s+=n; AppendTo[lst, s], {n, 0, 5!}]; lst
Table[Binomial[n-1, 2], {n, 60}]+3 (* Harvey P. Dale, Feb 27 2013 *)
PROG
(Sage) [3+binomial(n, 2) for n in range(0, 54)] # Zerinvary Lajos, Mar 12 2009
(PARI) Vec( x*(3-6*x+4*x^2)/(1-x)^3 + O(x^66) ) \\ Joerg Arndt, Jul 24 2013
(GAP) List([1..55], n->3+Binomial(n-1, 2)); # Muniru A Asiru, Oct 28 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved