login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A152949 a(n) = 3 + binomial(n-1,2). 2
3, 3, 4, 6, 9, 13, 18, 24, 31, 39, 48, 58, 69, 81, 94, 108, 123, 139, 156, 174, 193, 213, 234, 256, 279, 303, 328, 354, 381, 409, 438, 468, 499, 531, 564, 598, 633, 669, 706, 744, 783, 823, 864, 906, 949, 993, 1038, 1084, 1131, 1179, 1228, 1278, 1329, 1381 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

a(1)=3; then add 0 to the first number, then 1,2,3,4,... and so on.

LINKS

Muniru A Asiru, Table of n, a(n) for n = 1..5000

Index entries for linear recurrences with constant coefficients, signature (3,-3,1).

FORMULA

a(n) = a(n-1) + n - 2 (with a(1)=3). - Vincenzo Librandi, Nov 27 2010

a(n) = A016028(n+1) for n >= 2. - Georg Fischer, Oct 28 2018

EXAMPLE

G.f.: x*(3-6*x+4*x^2)/(1-x)^3. - Nikita Gogin, Jul 24 2013

MAPLE

seq(coeff(series(x*(4*x^2-6*x+3)/(1-x)^3, x, n+1), x, n), n = 1 .. 55); # Muniru A Asiru, Oct 28 2018

MATHEMATICA

s=3; lst={3}; Do[s+=n; AppendTo[lst, s], {n, 0, 5!}]; lst

Table[Binomial[n-1, 2], {n, 60}]+3 (* Harvey P. Dale, Feb 27 2013 *)

PROG

(Sage) [3+binomial(n, 2) for n in range(0, 54)] # Zerinvary Lajos, Mar 12 2009

(PARI) Vec( x*(3-6*x+4*x^2)/(1-x)^3 + O(x^66) ) \\ Joerg Arndt, Jul 24 2013

(GAP) List([1..55], n->3+Binomial(n-1, 2)); # Muniru A Asiru, Oct 28 2018

CROSSREFS

Cf. A000217, A016028, A152947, A000124, A152948, A152950.

Sequence in context: A241036 A241050 A080013 * A338431 A058660 A059871

Adjacent sequences:  A152946 A152947 A152948 * A152950 A152951 A152952

KEYWORD

nonn,easy

AUTHOR

Vladimir Joseph Stephan Orlovsky, Dec 15 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 14 12:11 EDT 2021. Contains 342949 sequences. (Running on oeis4.)