The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A152951 Complementary von Staudt prime numbers. 3
 71, 131, 191, 251, 311, 419, 431, 491, 599, 683, 743, 911, 947, 971, 1031, 1091, 1103, 1151, 1163, 1427, 1451, 1511, 1559, 1571, 1583 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS A prime number in the arithmetic progression 12n-1 which is not a von Staudt prime number, i.e., 12p <> denominator(B(p-1)/(p-1)), where B(n) is the Bernoulli number. LINKS Dana Jacobsen, Table of n, a(n) for n = 0..10883 P. Luschny, Von Staudt prime number, definition and computation. MAPLE select(j->(denom(bernoulli(j-1)/(j-1))<>12*j), select(isprime, [seq(12*k-1, k=1..100)])); MATHEMATICA Select[ 12*Range[200] - 1, PrimeQ[#] && 12 # != Denominator[ BernoulliB[# - 1]/(# - 1)]& ] ] (* Jean-François Alcover, Jul 29 2013 *) PROG (Perl) use ntheory ":all"; forprimes { my \$p=\$_; say if \$_ % 12 == 11 && vecany { \$_ > 3 && \$_ < \$p-1 && is_prime(\$_+1) } divisors(\$p-1); } 10000; # Dana Jacobsen, Dec 29 2015 (Perl) use ntheory ":all"; forprimes { say if \$_ % 12 == 11 && (bernfrac(\$_-1))[1] != 6*\$_; } 10000; # Dana Jacobsen, Dec 29 2015 CROSSREFS Cf. A092307. Sequence in context: A244167 A115395 A142647 * A090799 A044194 A044575 Adjacent sequences: A152948 A152949 A152950 * A152952 A152953 A152954 KEYWORD easy,nonn AUTHOR Peter Luschny, Dec 24 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 28 13:32 EST 2023. Contains 367419 sequences. (Running on oeis4.)