login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A152954
McKay-Thompson series of class 9d for the Monster group with a(0) = -2.
2
1, -2, -3, 2, 0, 6, 5, 0, 3, 6, 0, -18, 12, 0, 21, 16, 0, 6, 27, 0, -60, 34, 0, 72, 51, 0, 24, 70, 0, -168, 101, 0, 183, 134, 0, 54, 182, 0, -411, 240, 0, 450, 322, 0, 138, 416, 0, -936, 544, 0, 981, 696, 0, 282, 902, 0, -1989, 1144, 0, 2070, 1462, 0, 597, 1832, 0, -4026, 2317, 0, 4098
OFFSET
-1,2
LINKS
FORMULA
Expansion of F(q) - 2 - 3 / F(q) in powers of q where F(q) = (eta(q^9)^2 / (eta(q^3) * eta(q^27)))^2.
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = (v - u^2) * (u - v^2) + 4 * (1 + u + v) * (u + v + u*v).
G.f. is a period 1 Fourier series which satisfies f(-1 / (81 t)) = f(t) where q = exp(2 Pi i t).
a(3*n) = 0 unless n = 0.
EXAMPLE
1/q - 2 - 3*q + 2*q^2 + 6*q^4 + 5*q^5 + 3*q^7 + 6*q^8 - 18*q^10 + 12*q^11 + ...
MATHEMATICA
QP = QPochhammer; F = (QP[q^9]^2/(QP[q^3]*QP[q^27]))^2; s = F - 2*q - 3*(q^2/F) + O[q]^70; CoefficientList[s, q] (* Jean-François Alcover, Nov 16 2015, adapted from PARI *)
PROG
(PARI) {a(n) = local(A); if( n<-1, 0, n++; A = x * O(x^n); A = (eta(x^9 + A)^2 / eta(x^3 + A) / eta(x^27 + A))^2; polcoeff( A - 2 * x - 3 * x^2 / A, n))}
CROSSREFS
A058096(n) = a(n) unless n = 0. a(3*n - 1) = A058601(n).
Sequence in context: A284152 A011024 A105855 * A079175 A332742 A202815
KEYWORD
sign
AUTHOR
Michael Somos, Dec 15 2008
STATUS
approved