Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Jan 28 2019 23:51:24
%S 71,131,191,251,311,419,431,491,599,683,743,911,947,971,1031,1091,
%T 1103,1151,1163,1427,1451,1511,1559,1571,1583
%N Complementary von Staudt prime numbers.
%C A prime number in the arithmetic progression 12n-1 which is not a von Staudt prime number, i.e., 12p <> denominator(B(p-1)/(p-1)), where B(n) is the Bernoulli number.
%H Dana Jacobsen, <a href="/A152951/b152951.txt">Table of n, a(n) for n = 0..10883</a>
%H P. Luschny, <a href="http://www.luschny.de/math/zeta/VonStaudtPrimes.html">Von Staudt prime number, definition and computation.</a>
%p select(j->(denom(bernoulli(j-1)/(j-1))<>12*j),select(isprime,[seq(12*k-1,k=1..100)]));
%t Select[ 12*Range[200] - 1, PrimeQ[#] && 12 # != Denominator[ BernoulliB[# - 1]/(# - 1)]& ] ] (* _Jean-François Alcover_, Jul 29 2013 *)
%o (Perl) use ntheory ":all"; forprimes { my $p=$_; say if $_ % 12 == 11 && vecany { $_ > 3 && $_ < $p-1 && is_prime($_+1) } divisors($p-1); } 10000; # _Dana Jacobsen_, Dec 29 2015
%o (Perl) use ntheory ":all"; forprimes { say if $_ % 12 == 11 && (bernfrac($_-1))[1] != 6*$_; } 10000; # _Dana Jacobsen_, Dec 29 2015
%Y Cf. A092307.
%K easy,nonn
%O 0,1
%A _Peter Luschny_, Dec 24 2008