login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A338431
Row length of irregular triangle A337939.
1
1, 1, 1, 3, 3, 4, 6, 10, 8, 13, 15, 15, 21, 26, 21, 36, 36, 33, 45, 49, 42, 64, 66, 58, 72, 89, 71, 99, 105, 80, 120, 136, 105, 151, 137, 129, 171, 188, 147, 190, 210, 165, 231, 247, 184, 274, 276, 228, 288, 295
OFFSET
1,4
FORMULA
a(1) = 1, and for n >= 2, a(n) = Sum_{k=1..floor(n/2)} k = A000217(floor(n/2)) if b(n) := floor(n/2) - delta(n) = A219839(n) = 0, where delta(n) = A055034(n), and if b(n) > 0, i.e., n = n(j) = A111774(j), for j >= 1, then a(n) < A000217(floor(n/2)), determined by a(n) = A000217(delta(n)) + R(n), with R(n) = Sum_{k = delta(n)+1..floor(n/2)} (1 + degree(S(k-1, x) evaluated with C(n, x) = 0)), where the C polynomial coefficients are given in A187360.
EXAMPLE
n = 12: b(12) = 6 - 4 = 2 = A219839(12) > 0, hence A000217(4) = 10, R(4) = (1 + 2) + (1 + 1) = 5 from degree(S(4, x)/C(12,x) = 1*x^2) = 2 and degree(S(5, x)/C(12, x) = 2*x) = 1. Hence a(12) = 10 + 5 = 15.
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Jan 15 2021
STATUS
approved