login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A133263 Binomial transform of (1, 2, 0, 1, -1, 1, -1, 1, ...). 5
1, 3, 5, 8, 12, 17, 23, 30, 38, 47, 57, 68, 80, 93, 107, 122, 138, 155, 173, 192, 212, 233, 255, 278, 302, 327, 353, 380, 408, 437, 467, 498, 530, 563, 597, 632, 668, 705, 743, 782, 822, 863, 905, 948, 992, 1037, 1083, 1130, 1178, 1227, 1277 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

A007318 * [1, 2, 0, 1, -1, 1, -1, 1, ...]. Left column of A134249.

For n > 0: A228446(a(n)) = 5. - Reinhard Zumkeller, Mar 12 2014

LINKS

Harvey P. Dale, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (3, -3, 1).

FORMULA

From Emeric Deutsch, Nov 12 2007: (Start)

a(n) = (n^2 + n + 4)/2 for n > 0.

G.f.: (1 - x^2 + x^3)/(1-x)^3. (End)

a(n) = A000124(n) + 1, n >= 1. - Zerinvary Lajos, Apr 12 2008

a(0)=1, a(1)=3; for n >= 2, a(n) = a(n-1) + n. - Philippe Lallouet (philip.lallouet(AT)orange.fr), May 27 2008; corrected by Michel Marcus, Nov 03 2018

a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(0)=1, a(1)=3, a(2)=5, a(3)=8. - Harvey P. Dale, Feb 13 2012

For n > 0, a(n) = A000217(n) + 2. - Paolo P. Lava, Mar 20 2012

a(n) = A238531(n+1) if n >= 0. - Michael Somos, Feb 28 2014

a(n) = A022856(n+4) for n >= 1. - Georg Fischer, Nov 02 2018

EXAMPLE

a(3) = 8 = (1, 3, 3, 1) dot (1, 2 0, 1) = (1 + 6 + 0 + 1).

MAPLE

1, seq((n^2+n+4)*1/2, n=1..50); # Emeric Deutsch, Nov 12 2007

a:=n->add((Stirling2(j+1, n)), j=0..n): seq(a(n)+1, n=0..50); # Zerinvary Lajos, Apr 12 2008

MATHEMATICA

Join[{1}, Table[(n^2+n+4)/2, {n, 50}]] (* or *) Join[{1}, LinearRecurrence[ {3, -3, 1}, {3, 5, 8}, 50]] (* Harvey P. Dale, Feb 13 2012 *)

PROG

(PARI) a(n)=n*(n+1)/2+2 \\ Charles R Greathouse IV, Mar 26 2014

CROSSREFS

Cf. A022856, A134249, A238531.

Sequence in context: A095173 A002579 A023544 * A238531 A038088 A018917

Adjacent sequences:  A133260 A133261 A133262 * A133264 A133265 A133266

KEYWORD

nonn,easy

AUTHOR

Gary W. Adamson, Oct 15 2007

EXTENSIONS

More terms from Emeric Deutsch, Nov 12 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 09:32 EST 2019. Contains 329862 sequences. (Running on oeis4.)