login
A038088
Number of n-node rooted identity trees of height 4.
3
1, 3, 5, 8, 12, 17, 23, 32, 41, 52, 66, 83, 102, 124, 152, 181, 216, 255, 299, 346, 400, 458, 521, 588, 659, 735, 814, 896, 979, 1067, 1151, 1239, 1324, 1407, 1486, 1564, 1635, 1700, 1759, 1809, 1853, 1887, 1912, 1925, 1932, 1925, 1912, 1887, 1853
OFFSET
5,2
FORMULA
a(n) = A038083(n) - A038082(n).
MAPLE
weigh:= proc(p) proc(n) local x, k; coeff(series(mul((1+x^k)^p(k), k=1..n), x, n+1), x, n) end end: wsh:= p-> n-> weigh(p)(n-1): f:= n-> `if`(n>0 and n<12, [1$3, 2$5, 1$3][n], 0): a:= wsh(f)-f: seq(a(n), n=5..97); # Alois P. Heinz, Sep 10 2008
MATHEMATICA
f[n_]:=Nest[CoefficientList[Series[Product[(1+x^i)^#[[i]], {i, 1, Length[#]}], {x, 0, 50}], x]&, {1}, n]; Drop[f[4]-PadRight[f[3], Length[f[4]]], 4] (* Geoffrey Critzer, Aug 01 2013 *)
CROSSREFS
Column k=4 of A227819.
Sequence in context: A023544 A133263 A238531 * A018917 A167385 A265061
KEYWORD
nonn,fini,full
AUTHOR
Christian G. Bower, Jan 04 1999
STATUS
approved