login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A002579
Number of integral points in a certain sequence of closed quadrilaterals.
(Formerly M2440 N0967)
2
3, 5, 8, 12, 17, 23, 30, 37, 45, 54, 64, 75, 87, 99, 112, 126, 141, 157, 174, 191, 209, 228, 248, 269, 291, 313, 336, 360, 385, 411, 438, 465, 493, 522, 552, 583, 615, 647, 680, 714, 749, 785, 822, 859, 897, 936, 976, 1017, 1059, 1101, 1144
OFFSET
1,1
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Eugène Ehrhart, Deux corollaires de la loi de réciprocité du polyèdre rationnel, C. R. Acad. Sci. Paris Ser. A 265, 1967, 160-162.
Eugène Ehrhart, Deux corollaires de la loi de réciprocité du polyèdre rationnel, C. R. Acad. Sci. Paris Ser. A 265, 1967, 160-162. [Annotated scanned copy]
FORMULA
Ehrhart (1967) gives a g.f. on page 161.
G.f.: (x^5+x^4+x^3+x+1)/((1-x^6)*(1-x)^2). - Sean A. Irvine, Apr 25 2017
MATHEMATICA
Rest[CoefficientList[Series[(x^5 + x^4 + x^3 + x + 1) / ((1 - x^6) (1 - x)^2), {x, 0, 40}], x]] (* Vincenzo Librandi, Apr 26 2017 *)
CROSSREFS
Cf. A002578.
Sequence in context: A241567 A131674 A095173 * A023544 A133263 A238531
KEYWORD
nonn,easy
EXTENSIONS
More terms from Sean A. Irvine, Apr 25 2017
STATUS
approved