|
|
A131674
|
|
Size of the largest BDD of symmetric Boolean functions of n variables when the sink nodes are not counted.
|
|
1
|
|
|
0, 1, 3, 5, 8, 12, 17, 23, 29, 36, 44, 53, 63, 74, 86, 99, 113, 127, 142, 158, 175, 193, 212, 232, 253, 275, 298, 322, 347, 373, 400, 428, 457, 487, 517, 548, 580, 613, 647, 682, 718, 755, 793, 832, 872, 913, 955, 998, 1042, 1087, 1133, 1180, 1228, 1277, 1327, 1378, 1430, 1483
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
REFERENCES
|
Mark Heap, On the exact ordered binary decision diagram size of totally symmetric functions, Journal of Electronic Testing 4 (1993), 191-195.
Ingo Wegener, Optimal decision trees and one-time-only branching programs for symmetric Boolean functions, Information and Control 62 (1984), 129-143.
|
|
LINKS
|
|
|
FORMULA
|
a(n) = sum_{k=1..n} min(k,2^{n+2-k}-2).
|
|
MATHEMATICA
|
f[n_] := Sum[ Min[k, 2^{n + 2 - k} - 2], {k, n}]; Table[ f@n, {n, 0, 57}] (* Robert G. Wilson v, Sep 16 2007 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|