OFFSET
0,1
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..2500
Index entries for linear recurrences with constant coefficients, signature (1,0,1,1).
FORMULA
G.f.: (2 - x^2 - x^3) / (1 - x - x^3 - x^4) = (1 - x) * (2 + 2*x + x^2) / ((1 + x^2) * (1 - x - x^2)).
a(n) = a(n-1) + a(n-3) + a(n-4) for all n in Z.
0 = a(n)*a(n+2) + a(n+1)*(+a(n+2) -a(n+3)) for all n in Z.
EXAMPLE
G.f. = 2 + 2*x + x^2 + 2*x^3 + 6*x^4 + 9*x^5 + 12*x^6 + 20*x^7 + 35*x^8 + ...
MATHEMATICA
a[ n_] := Fibonacci[ Quotient[ n + 3, 2]] LucasL[ Quotient[ n, 2]];
CoefficientList[Series[(2-x^2-x^3)/(1-x-x^3-x^4), {x, 0, 60}], x] (* G. C. Greubel, Aug 07 2018 *)
PROG
(PARI) {a(n) = fibonacci( (n+3)\2 ) * (fibonacci( n\2+1 ) + fibonacci( n\2-1 ))};
(PARI) x='x+O('x^60); Vec((2-x^2-x^3)/(1-x-x^3-x^4)) \\ G. C. Greubel, Aug 07 2018
(Magma) m:=60; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(2-x^2-x^3)/(1-x-x^3-x^4)); // G. C. Greubel, Aug 07 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Michael Somos, Jan 19 2014
STATUS
approved