login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = F(floor( (n+3)/2 )) * L(floor( (n+2)/2 )) where F=Fibonacci and L=Lucas numbers.
1

%I #26 Nov 05 2024 05:40:17

%S 2,2,1,2,6,9,12,20,35,56,88,143,234,378,609,986,1598,2585,4180,6764,

%T 10947,17712,28656,46367,75026,121394,196417,317810,514230,832041,

%U 1346268,2178308,3524579,5702888,9227464,14930351,24157818,39088170,63245985,102334154

%N a(n) = F(floor( (n+3)/2 )) * L(floor( (n+2)/2 )) where F=Fibonacci and L=Lucas numbers.

%H G. C. Greubel, <a href="/A236144/b236144.txt">Table of n, a(n) for n = 0..2500</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,1,1).

%F G.f.: (2 - x^2 - x^3) / (1 - x - x^3 - x^4) = (1 - x) * (2 + 2*x + x^2) / ((1 + x^2) * (1 - x - x^2)).

%F a(n) = a(n-1) + a(n-3) + a(n-4) for all n in Z.

%F 0 = a(n)*a(n+2) + a(n+1)*(+a(n+2) -a(n+3)) for all n in Z.

%F a(n) = A115008(n+2) - A115008(n+1).

%F a(n) = A115339(n) * A115339(n-1).

%F a(2*n - 1) = F(n+1) * L(n-1) = A128535(n+1). a(2*n) = F(n+1) * L(n) = A128534(n+1).

%F a(n) = A000045(n+1)+A057077(n). - _R. J. Mathar_, Sep 24 2021

%e G.f. = 2 + 2*x + x^2 + 2*x^3 + 6*x^4 + 9*x^5 + 12*x^6 + 20*x^7 + 35*x^8 + ...

%t a[ n_] := Fibonacci[ Quotient[ n + 3, 2]] LucasL[ Quotient[ n, 2]];

%t CoefficientList[Series[(2-x^2-x^3)/(1-x-x^3-x^4), {x, 0, 60}], x] (* _G. C. Greubel_, Aug 07 2018 *)

%o (PARI) {a(n) = fibonacci( (n+3)\2 ) * (fibonacci( n\2+1 ) + fibonacci( n\2-1 ))};

%o (PARI) x='x+O('x^60); Vec((2-x^2-x^3)/(1-x-x^3-x^4)) \\ _G. C. Greubel_, Aug 07 2018

%o (Magma) m:=60; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(2-x^2-x^3)/(1-x-x^3-x^4)); // _G. C. Greubel_, Aug 07 2018

%Y Cf. A000032, A000045, A115008, A115339, A128534, A128535.

%K nonn,easy

%O 0,1

%A _Michael Somos_, Jan 19 2014