login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A128534
a(n) = Fibonacci(n)*Lucas(n-1).
5
0, 2, 1, 6, 12, 35, 88, 234, 609, 1598, 4180, 10947, 28656, 75026, 196417, 514230, 1346268, 3524579, 9227464, 24157818, 63245985, 165580142, 433494436, 1134903171, 2971215072, 7778742050, 20365011073, 53316291174, 139583862444, 365435296163, 956722026040, 2504730781962
OFFSET
0,2
COMMENTS
Generally, F(n)*L(n+k) = F(2*n + k) + F(k)*(-1)^(n+1). If k=0 the sequence is A001906; if k=1 it is A081714.
a(n) is the maximum area of a quadrilateral with lengths of sides in order F(n), F(n), L(n-1), L(n-1) for n>1. - J. M. Bergot, Jan 28 2016
Can be obtained (up to signs) by setting x = F(n)/F(n+1) in g.f. for Lucas numbers - see Pongsriiam. - N. J. A. Sloane, Mar 23 2017
LINKS
FORMULA
a(n) = F(2*n - 1) + (-1)^(n+1), assuming F(0)=0 and L(0)=2.
From R. J. Mathar, Apr 16 2009: (Start)
a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3).
G.f.: x*(2-3*x)/((1+x)*(x^2-3*x+1)). (End)
a(n) = (2^(-1-n)*(-5*(-1)^n*2^(1+n) - (-5+sqrt(5))*(3+sqrt(5))^n + (3-sqrt(5))^n*(5+sqrt(5))))/5. - Colin Barker, Apr 05 2016
a(n+1) = A081714(n) + 2*(-1)^n. - A.H.M. Smeets, Feb 26 2022
EXAMPLE
a(5) = 35 because F(5)*L(4) = 5*7.
MAPLE
seq(combinat:-fibonacci(2*n-1)+(-1)^(n+1), n=0..50); # Robert Israel, Jan 28 2016
MATHEMATICA
Table[Fibonacci[n] LucasL[n - 1], {n, 0, 31}] (* Michael De Vlieger, Jan 29 2016 *)
PROG
(PARI) concat( 0, Vec(-x*(-2+3*x)/((1+x)*(x^2-3*x+1)) + O(x^40))) \\ Michel Marcus, Jan 28 2016
(Magma) [Fibonacci(n)*Lucas(n-1): n in [0..30]]; // G. C. Greubel, Dec 21 2017
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Axel Harvey, Mar 08 2007
EXTENSIONS
More terms from Michel Marcus, Jan 28 2016
STATUS
approved