login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A081064 Irregular array, read by rows: T(n,k) is the number of labeled acyclic digraphs with n nodes and k arcs (n >= 0, 0 <= k <= n*(n-1)/2). 17
1, 1, 1, 2, 1, 6, 12, 6, 1, 12, 60, 152, 186, 108, 24, 1, 20, 180, 940, 3050, 6180, 7960, 6540, 3330, 960, 120, 1, 30, 420, 3600, 20790, 83952, 240480, 496680, 750810, 838130, 691020, 416160, 178230, 51480, 9000, 720, 1, 42, 840, 10570, 93030, 601944 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,4
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1350 (rows 0..20)
E. de Panafieu and S. Dovgal, Symbolic method and directed graph enumeration, arXiv:1903.09454 [math.CO], 2019.
R. W. Robinson, Counting digraphs with restrictions on the strong components, Combinatorics and Graph Theory '95 (T.-H. Ku, ed.), World Scientific, Singapore (1995), 343-354.
V. I. Rodionov, On the number of labeled acyclic digraphs, Discr. Math. 105 (1-3) (1992), 319-321.
FORMULA
1 = 1*exp(-x) + 1*exp(-(1+y)*x)*x/1! + (2*y+1)*exp(-(1+y)^2*x)*x^2/2! + (6*y^3 + 12*y^2 + 6*y + 1)*exp(-(1+y)^3*x)*x^3/3! + (24*y^6 + 108*y^5 + 186*y^4 + 152*y^3 + 60*y^2 + 12*y + 1)*exp(-(1+y)^4*x)*x^4/4! + (120*y^10 + 960*y^9 + 3330*y^8 + 6540*y^7 + 7960*y^6 + 6180*y^5 + 3050*y^4 + 940*y^3 + 180*y^2 + 20*y + 1)*exp(-(1+y)^5*x)*x^5/5! + ... - Vladeta Jovovic, Jun 07 2005
We explain Vladeta Jovovic's functional equation above. If F_n(y) = Sum_{k = 0..n*(n-1)/2) T(n,k) * y^k for n >= 0, then Sum_{n >= 0} F_n(y) * exp(-(1 + y)^n * x) * x^n/n! = 1. - Petros Hadjicostas, Apr 11 2020
From Petros Hadjicostas, Apr 10 2020: (Start)
If A_n(x) = Sum_{k >= 0} T(n,k)*x^k (with T(n,k) = 0 for k > n*(n-1)/2)), then Sum_{m=1..n} (-1)^(m-1) * binomial(n,m) * (1 + x)^(m*(n-m)) * A_m(x) = 1.
T(n,0) = 1, T(n,1) = n*(n-1), T(n,2) = 12*binomial(n+1,4), and T(n,3) = binomial(n,3)*(n^3 - 5*n - 6).
Also, T(n, n*(n-1)/2 - 1) = A055533(n) = n!*(n-1)^2/2 for n > 1. (End)
EXAMPLE
Array T(n,k) (with n >= 0 and 0 <= k <= n*(n-1)/2) begins as follows:
1;
1;
1, 2;
1, 6, 12, 6;
1, 12, 60, 152, 186, 108, 24;
1, 20, 180, 940, 3050, 6180, 7960, 6540, 3330, 960, 120;
...
From Petros Hadjicostas, Apr 10 2020: (Start)
For n=2 and k=2, we have T(2,2) = 2 labeled directed acyclic graphs with 2 nodes and 2 arcs: [A (double ->) B] and [B (double ->) A].
For n=3 and k=4, we have T(3,4) = 6 labeled directed acyclic graphs with 3 nodes and 4 arcs: [X (double ->) Y (single ->) Z (single <-) X] with (X,Y,Z) a permutation of {A,B,C}. (End)
MAPLE
A081064gf := proc(n, x)
local m, a ;
option remember;
if n = 0 then
1;
else
a := 0 ;
for m from 1 to n do
a := a+(-1)^(m-1)*binomial(n, m)*(1+x)^(m*(n-m)) *procname(n-m, x) ;
end do:
expand(a) ;
end if;
end proc:
A081064 := proc(n, k)
coeff(A081064gf(n, x), x, k) ;
end proc:
for n from 0 to 8 do
for k from 0 do
tnk := A081064(n, k) ;
if tnk =0 then
break;
end if;
printf("%d ", tnk) ;
end do:
printf("\n") ;
end do: # R. J. Mathar, Mar 21 2019
MATHEMATICA
nn = 6; a[n_] := a[n] = Sum[(-1)^(k + 1) Binomial[n, k] (1 + x)^(k (n - k)) a[ n - k], {k, 1, n}]; a[0] = 1; Table[CoefficientList[a[n], x], {n, 0, nn}] // Grid (* Geoffrey Critzer, Mar 11 2023 *)
PROG
(PARI)
B(n)={my(v=vector(n)); for(n=1, #v, v[n]=vector(n, i, if(i==n, 1, my(u=v[n-i]); sum(j=1, #u, (1+'y)^(i*(#u-j))*((1+'y)^i-1)^j * binomial(n, i) * u[j])))); v}
T(n)={my(v=B(n)); vector(#v+1, n, if(n==1, [1], Vecrev(vecsum(v[n-1]))))}
{ my(A=T(5)); for(i=1, #A, print(A[i])) } \\ Andrew Howroyd, Dec 27 2021
CROSSREFS
Cf. A003024 (row sums), A055533 (subdiagonal).
Columns: A147796 (k = 3), A147817 (k = 4), A147821 (k = 5), A147860 (k = 6), A147872 (k = 7), A147881 (k = 8), A147883 (k = 9), A147964 (k = 10).
Sequence in context: A303986 A342589 A325635 * A350749 A347594 A128534
KEYWORD
easy,nonn,tabf
AUTHOR
Vladeta Jovovic, Apr 15 2003
EXTENSIONS
T(0,0) = 1 prepended by Petros Hadjicostas, Apr 11 2020
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 4 16:44 EST 2023. Contains 367563 sequences. (Running on oeis4.)