login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A350749
Triangle read by rows: T(n,k) is the number of oriented graphs on n labeled nodes with k arcs, n >= 0, k = 0..n*(n-1)/2.
1
1, 1, 1, 2, 1, 6, 12, 8, 1, 12, 60, 160, 240, 192, 64, 1, 20, 180, 960, 3360, 8064, 13440, 15360, 11520, 5120, 1024, 1, 30, 420, 3640, 21840, 96096, 320320, 823680, 1647360, 2562560, 3075072, 2795520, 1863680, 860160, 245760, 32768
OFFSET
0,4
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1350 (rows 0..20)
FORMULA
T(n,k) = 2^k * binomial(n*(n-1)/2, k) = A013609(n*(n-1)/2, k).
T(n,k) = [y^k] (1+2*y)^(n*(n-1)/2).
EXAMPLE
Triangle begins:
[0] 1;
[1] 1;
[2] 1, 2;
[3] 1, 6, 12, 8;
[4] 1, 12, 60, 160, 240, 192, 64;
[5] 1, 20, 180, 960, 3360, 8064, 13440, 15360, 11520, 5120, 1024;
...
PROG
(PARI) T(n, k) = 2^k * binomial(n*(n-1)/2, k)
(PARI)
row(n) = {Vecrev((1+2*y)^(n*(n-1)/2))}
{ for(n=0, 6, print(row(n))) }
CROSSREFS
Row sums are A047656.
The unlabeled version is A350733.
Cf. A013609, A350732 (weakly connected), A350731 (strongly connected).
Sequence in context: A325635 A375753 A081064 * A347594 A128534 A002562
KEYWORD
nonn,tabf
AUTHOR
Andrew Howroyd, Feb 15 2022
STATUS
approved