login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n,k) is the number of oriented graphs on n labeled nodes with k arcs, n >= 0, k = 0..n*(n-1)/2.
1

%I #8 Feb 16 2022 15:33:26

%S 1,1,1,2,1,6,12,8,1,12,60,160,240,192,64,1,20,180,960,3360,8064,13440,

%T 15360,11520,5120,1024,1,30,420,3640,21840,96096,320320,823680,

%U 1647360,2562560,3075072,2795520,1863680,860160,245760,32768

%N Triangle read by rows: T(n,k) is the number of oriented graphs on n labeled nodes with k arcs, n >= 0, k = 0..n*(n-1)/2.

%H Andrew Howroyd, <a href="/A350749/b350749.txt">Table of n, a(n) for n = 0..1350</a> (rows 0..20)

%F T(n,k) = 2^k * binomial(n*(n-1)/2, k) = A013609(n*(n-1)/2, k).

%F T(n,k) = [y^k] (1+2*y)^(n*(n-1)/2).

%e Triangle begins:

%e [0] 1;

%e [1] 1;

%e [2] 1, 2;

%e [3] 1, 6, 12, 8;

%e [4] 1, 12, 60, 160, 240, 192, 64;

%e [5] 1, 20, 180, 960, 3360, 8064, 13440, 15360, 11520, 5120, 1024;

%e ...

%o (PARI) T(n,k) = 2^k * binomial(n*(n-1)/2, k)

%o (PARI)

%o row(n) = {Vecrev((1+2*y)^(n*(n-1)/2))}

%o { for(n=0, 6, print(row(n))) }

%Y Row sums are A047656.

%Y The unlabeled version is A350733.

%Y Cf. A013609, A350732 (weakly connected), A350731 (strongly connected).

%K nonn,tabf

%O 0,4

%A _Andrew Howroyd_, Feb 15 2022