login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A128536
a(n) = numerator of r(n): r(n) is such that, for every positive integer n, the continued fraction (of rational terms) [r(1);r(2),...,r(n)] equals n(n+1)/2, the n-th triangular number.
2
1, 1, -10, 21, -16, 165, -1664, 2625, -34816, 41895, -32768, 334719, -6553600, 2675673, -60817408, 85579065, -67108864, 2737609875, -79456894976, 21895664505, -704374636544, 175134692733, -687194767360, 2801784820107, -2199023255552, 44823971549175
OFFSET
1,3
FORMULA
For n >=4, r(n) = -(2n-1)*(2n-3)/(n(n-2) r(n-1)).
EXAMPLE
The 4th triangular number, 10, equals 1 +(1/2 +1/(-10/3 +16/21)).
The 5th triangular number, 15, equals 1 +(1/2 +1/(-10/3 +1/(21/16 -5/16))).
MAPLE
L2cfrac := proc(L, targ) local a, i; a := targ ; for i from 1 to nops(L) do a := 1/(a-op(i, L)) ; od: end: A128536 := proc(nmax) local b, n, bnxt; b := [1] ; for n from nops(b)+1 to nmax do bnxt := L2cfrac(b, n*(n+1)/2) ; b := [op(b), bnxt] ; od: [seq( numer(b[i]), i=1..nops(b))] ; end: A128536(26) ; # R. J. Mathar, Oct 09 2007
CROSSREFS
Cf. A128537.
Sequence in context: A085222 A085221 A341111 * A202318 A251128 A244539
KEYWORD
frac,sign
AUTHOR
Leroy Quet, Mar 09 2007
EXTENSIONS
More terms from R. J. Mathar, Oct 09 2007
STATUS
approved