login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A128537
a(n) = denominator of r(n): r(n) is such that, for every positive integer n, the continued fraction (of rational terms) [r(1);r(2),...,r(n)] equals n(n+1)/2, the n-th triangular number.
2
1, 2, 3, 16, 5, 128, 525, 2048, 11025, 32768, 10395, 262144, 2081079, 2097152, 19324305, 67108864, 21332025, 2147483648, 25264228275, 17179869184, 224009490705, 137438953472, 218578957597, 2199023255552, 699533769675
OFFSET
1,2
FORMULA
For n >=4, r(n) = -(2n-1)*(2n-3)/(n(n-2) r(n-1)).
EXAMPLE
The 4th triangular number, 10, equals 1 +(1/2 +1/(-10/3 +16/21)).
The 5th triangular number, 15, equals 1 +(1/2 +1/(-10/3 +1/(21/16 -5/16))).
MAPLE
L2cfrac := proc(L, targ) local a, i; a := targ ; for i from 1 to nops(L) do a := 1/(a-op(i, L)) ; od: end: A128537 := proc(nmax) local b, n, bnxt; b := [1] ; for n from nops(b)+1 to nmax do bnxt := L2cfrac(b, n*(n+1)/2) ; b := [op(b), bnxt] ; od: [seq( denom(b[i]), i=1..nops(b))] ; end: A128537(26) ; # R. J. Mathar, Oct 09 2007
CROSSREFS
Cf. A128536.
Sequence in context: A218323 A369893 A345136 * A266265 A259209 A220849
KEYWORD
frac,nonn
AUTHOR
Leroy Quet, Mar 09 2007
EXTENSIONS
More terms from R. J. Mathar, Oct 09 2007
STATUS
approved