login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A128540
Triangle A127647 * A097806, read by rows.
4
1, 1, 1, 0, 2, 2, 0, 0, 3, 3, 0, 0, 0, 5, 5, 0, 0, 0, 0, 8, 8, 0, 0, 0, 0, 0, 13, 13, 0, 0, 0, 0, 0, 0, 21, 21, 0, 0, 0, 0, 0, 0, 0, 34, 34, 0, 0, 0, 0, 0, 0, 0, 0, 55, 55, 0, 0, 0, 0, 0, 0, 0, 0, 0, 89, 89, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 144, 144
OFFSET
1,5
COMMENTS
Row sums = A094895 starting (1, 2, 4, 6, 10, 16, 26, ...). A128541 = A097806 * A127647.
FORMULA
A127646 * A097806 as infinite lower triangular matrices.
EXAMPLE
First few rows of the triangle:
1;
1, 1;
0, 2, 2;
0, 0, 3, 3;
0, 0, 0, 5, 5;
0, 0, 0, 0, 8, 8;
...
MATHEMATICA
Table[If[k==n || k==n-1, Fibonacci[n], 0]], {n, 15}, {k, n}]//Flatten (* G. C. Greubel, Jul 11 2019 *)
PROG
(PARI) T(n, k) = if(k==n || k==n-1, fibonacci(n), 0); \\ G. C. Greubel, Jul 11 2019
(Magma) [k eq n select Fibonacci(n) else k eq n-1 select Fibonacci(n) else 0: k in [1..n], n in [1..15]]; // G. C. Greubel, Jul 11 2019
(Sage)
def T(n, k):
if (k==n): return fibonacci(n)
elif (k==n-1): return fibonacci(n)
else: return 0
[[T(n, k) for k in (1..n)] for n in (1..15)] # G. C. Greubel, Jul 11 2019
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Mar 10 2007
STATUS
approved