login
A128540
Triangle A127647 * A097806, read by rows.
4
1, 1, 1, 0, 2, 2, 0, 0, 3, 3, 0, 0, 0, 5, 5, 0, 0, 0, 0, 8, 8, 0, 0, 0, 0, 0, 13, 13, 0, 0, 0, 0, 0, 0, 21, 21, 0, 0, 0, 0, 0, 0, 0, 34, 34, 0, 0, 0, 0, 0, 0, 0, 0, 55, 55, 0, 0, 0, 0, 0, 0, 0, 0, 0, 89, 89, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 144, 144
OFFSET
1,5
COMMENTS
Row sums = A094895 starting (1, 2, 4, 6, 10, 16, 26, ...). A128541 = A097806 * A127647.
FORMULA
A127646 * A097806 as infinite lower triangular matrices.
EXAMPLE
First few rows of the triangle:
1;
1, 1;
0, 2, 2;
0, 0, 3, 3;
0, 0, 0, 5, 5;
0, 0, 0, 0, 8, 8;
...
MATHEMATICA
Table[If[k==n || k==n-1, Fibonacci[n], 0]], {n, 15}, {k, n}]//Flatten (* G. C. Greubel, Jul 11 2019 *)
PROG
(PARI) T(n, k) = if(k==n || k==n-1, fibonacci(n), 0); \\ G. C. Greubel, Jul 11 2019
(Magma) [k eq n select Fibonacci(n) else k eq n-1 select Fibonacci(n) else 0: k in [1..n], n in [1..15]]; // G. C. Greubel, Jul 11 2019
(Sage)
def T(n, k):
if (k==n): return fibonacci(n)
elif (k==n-1): return fibonacci(n)
else: return 0
[[T(n, k) for k in (1..n)] for n in (1..15)] # G. C. Greubel, Jul 11 2019
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Mar 10 2007
STATUS
approved