login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A128542
a(n) = ((2n)^(2n) - 1)/((2n+1)*(2n-1)).
1
0, 1, 17, 1333, 266305, 101010101, 62350352785, 56984650387477, 72340172838076673, 121815504877079063701, 262801002506265664160401, 706890015246831381773595701, 2319540481478754999041880822337, 9120177155862455275254332279111413
OFFSET
0,3
COMMENTS
p divides a(p-1) for prime p>3.
LINKS
FORMULA
a(n) = ((2n)^(2n)-1)/((2n+1)*(2n-1)).
a(n) = A048861(2n)/((2n+1)*(2n-1)).
a(n) = A023037(2n)/(2n+1).
a(n) = A089815(2n-2).
MATHEMATICA
Join[{0}, Table[((2n)^(2n)-1)/(4n^2-1), {n, 1, 20}]]
PROG
(PARI) A128542(n)=((n+=n)^n-1)/(n^2-1) \\ M. F. Hasler, Oct 31 2014
(Magma) [0] cat [((2*n)^(2*n)-1)/(4*n^2 -1): n in [1..20]]; // G. C. Greubel, Jul 11 2019
(Sage) [0]+[((2*n)^(2*n)-1)/(4*n^2 -1) for n in (1..20)] # G. C. Greubel, Jul 11 2019
(GAP) Concatenation([0], List([1..20], n-> ((2*n)^(2*n)-1)/(4*n^2 -1) )); # G. C. Greubel, Jul 11 2019
CROSSREFS
Cf. A048861 = n^n - 1.
Sequence in context: A188717 A266866 A289945 * A316746 A067409 A219562
KEYWORD
nonn
AUTHOR
Alexander Adamchuk, May 08 2007
EXTENSIONS
a(0)=0 added by M. F. Hasler, Oct 31 2014
STATUS
approved