login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A128541
Triangle, A097806 * A127647, read by rows.
3
1, 1, 1, 0, 1, 2, 0, 0, 2, 3, 0, 0, 0, 3, 5, 0, 0, 0, 0, 5, 8, 0, 0, 0, 0, 0, 8, 13, 0, 0, 0, 0, 0, 0, 13, 21, 0, 0, 0, 0, 0, 0, 0, 21, 34, 0, 0, 0, 0, 0, 0, 0, 0, 34, 55, 0, 0, 0, 0, 0, 0, 0, 0, 0, 55, 89, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 89, 144, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 144, 233
OFFSET
0,6
COMMENTS
Row sums = A000045 starting (1, 2, 3, 5, 8, 13, ...). A128540 = A127647 * A097806.
FORMULA
A097806 * A127647 as infinite lower triangular matrices.
EXAMPLE
First few rows of the triangle:
1;
1, 1;
0, 1, 2;
0, 0, 2, 3;
0, 0, 0, 3, 5;
0, 0, 0, 0, 5, 8;
...
MATHEMATICA
Table[If[k==n, Fibonacci[n+1], If[k==n-1, Fibonacci[n], 0]], {n, 0, 15}, {k, 0, n}]//Flatten (* G. C. Greubel, Jul 11 2019 *)
PROG
(PARI) T(n, k) = if(k==n, fibonacci(n+1), if(k==n-1, fibonacci(n), 0)); \\ G. C. Greubel, Jul 11 2019
(Magma) [k eq n select Fibonacci(n+1) else k eq n-1 select Fibonacci(n) else 0: k in [0..n], n in [0..15]]; // G. C. Greubel, Jul 11 2019
(Sage)
def T(n, k):
if (k==n): return fibonacci(n+1)
elif (k==n-1): return fibonacci(n)
else: return 0
[[T(n, k) for k in (0..n)] for n in (0..15)] # G. C. Greubel, Jul 11 2019
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Mar 10 2007
EXTENSIONS
More terms added by G. C. Greubel, Jul 11 2019
STATUS
approved