OFFSET
0,6
COMMENTS
G_0(n) = n. To get to the second term in the row, convert n to hereditary base 2 representation (see links), replace each 2 with a 3, and subtract 1. For the third term, convert the second term (G_1(n)) into hereditary base 3 notation, replace each 3 with a 4, and subtract one. This pattern continues until the sequence converges to 0, which, by Goodstein's Theorem, occurs for all n.
LINKS
Eric Weisstein's World of Mathematics, Hereditary Representation
Eric Weisstein's World of Mathematics, Goodstein Sequence
Eric Weisstein's World of Mathematics, Goodstein's Theorem
Wikipedia, Hereditary base-n notation
Wikipedia, Goodstein sequence
Wikipedia, Goodstein's Theorem
EXAMPLE
| n\k | 0 1 2 3 4 5 6 7 8 9 ...
|-----|------------------------------------------------------------------------
| 0 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
| 1 | 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
| 2 | 2, 2, 1, 0, 0, 0, 0, 0, 0, 0, ...
| 3 | 3, 3, 3, 2, 1, 0, 0, 0, 0, 0, ...
| 4 | 4, 26, 41, 60, 83, 109, 139, 173, 211, 253, ...
| 5 | 5, 27, 255, 467, 775, 1197, 1751, 2454, 3325, 4382, ...
| 6 | 6, 29, 257, 3125, 46655, 98039, 187243, 332147, 555551, 885775, ...
| ... |
PROG
(PARI) B(n, b)=sum(i=1, #n=digits(n, b), n[i]*(b+1)^if(#n<b+i, #n-i, B(#n-i, b)))
A(n, k) = for(i=1, k, if(n==0, break()); n=B(n, i+1)-1); n
CROSSREFS
n-th row: A000004 (n=0), A000007 (n=1), A215409 (n=3), A056193 (n=4), A266204 (n=5), A266205 (n=6), A271554 (n=7), A271555 (n=8), A271556 (n=9), A271557 (n=10), A271558 (n=11), A271559 (n=12), A271560 (n=13), A271561 (n=14), A222117 (n=15), A059933 (n=16), A271562 (n=17), A271975 (n=18) A211378 (n=19), A271976 (n=20).
k-th column: A001477 (k=0), A056004 (k=1), A057650 (k=2), A059934 (k=3), A059935 (k=4), A059936 (k=5), A271977 (k=6), A271978 (k=7), A271979 (k=8), A271985 (k=9), A271986 (k=10).
G_n(n) = A266201(n) (main diagonal of array).
KEYWORD
AUTHOR
Iain Fox, Dec 12 2017
STATUS
approved