login
A296441
Array A(n, k) = G_k(n) where G_k(n) is the k-th term of the Goodstein sequence of n, read by antidiagonals.
1
0, 0, 1, 0, 0, 2, 0, 0, 2, 3, 0, 0, 1, 3, 4, 0, 0, 0, 3, 26, 5, 0, 0, 0, 2, 41, 27, 6, 0, 0, 0, 1, 60, 255, 29, 7, 0, 0, 0, 0, 83, 467, 257, 30, 8, 0, 0, 0, 0, 109, 775, 3125, 259, 80, 9, 0, 0, 0, 0, 139, 1197, 46655, 3127, 553, 81, 10, 0, 0, 0, 0, 173, 1751, 98039, 46657, 6310, 1023, 83, 11
OFFSET
0,6
COMMENTS
G_0(n) = n. To get to the second term in the row, convert n to hereditary base 2 representation (see links), replace each 2 with a 3, and subtract 1. For the third term, convert the second term (G_1(n)) into hereditary base 3 notation, replace each 3 with a 4, and subtract one. This pattern continues until the sequence converges to 0, which, by Goodstein's Theorem, occurs for all n.
LINKS
Eric Weisstein's World of Mathematics, Hereditary Representation
Eric Weisstein's World of Mathematics, Goodstein Sequence
Eric Weisstein's World of Mathematics, Goodstein's Theorem
EXAMPLE
| n\k | 0 1 2 3 4 5 6 7 8 9 ...
|-----|------------------------------------------------------------------------
| 0 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
| 1 | 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
| 2 | 2, 2, 1, 0, 0, 0, 0, 0, 0, 0, ...
| 3 | 3, 3, 3, 2, 1, 0, 0, 0, 0, 0, ...
| 4 | 4, 26, 41, 60, 83, 109, 139, 173, 211, 253, ...
| 5 | 5, 27, 255, 467, 775, 1197, 1751, 2454, 3325, 4382, ...
| 6 | 6, 29, 257, 3125, 46655, 98039, 187243, 332147, 555551, 885775, ...
| ... |
PROG
(PARI) B(n, b)=sum(i=1, #n=digits(n, b), n[i]*(b+1)^if(#n<b+i, #n-i, B(#n-i, b)))
A(n, k) = for(i=1, k, if(n==0, break()); n=B(n, i+1)-1); n
CROSSREFS
n-th row: A000004 (n=0), A000007 (n=1), A215409 (n=3), A056193 (n=4), A266204 (n=5), A266205 (n=6), A271554 (n=7), A271555 (n=8), A271556 (n=9), A271557 (n=10), A271558 (n=11), A271559 (n=12), A271560 (n=13), A271561 (n=14), A222117 (n=15), A059933 (n=16), A271562 (n=17), A271975 (n=18) A211378 (n=19), A271976 (n=20).
k-th column: A001477 (k=0), A056004 (k=1), A057650 (k=2), A059934 (k=3), A059935 (k=4), A059936 (k=5), A271977 (k=6), A271978 (k=7), A271979 (k=8), A271985 (k=9), A271986 (k=10).
G_n(n) = A266201(n) (main diagonal of array).
Sequence in context: A153869 A128541 A122908 * A091008 A111006 A046742
KEYWORD
base,nonn,tabl
AUTHOR
Iain Fox, Dec 12 2017
STATUS
approved